summaryrefslogtreecommitdiffstats
path: root/base/timer.h
blob: 6fe826a0b5ca6c9cc3dd8bb3063421f2680f374b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// OneShotTimer and RepeatingTimer provide a simple timer API.  As the names
// suggest, OneShotTimer calls you back once after a time delay expires.
// RepeatingTimer on the other hand calls you back periodically with the
// prescribed time interval.
//
// OneShotTimer and RepeatingTimer both cancel the timer when they go out of
// scope, which makes it easy to ensure that you do not get called when your
// object has gone out of scope.  Just instantiate a OneShotTimer or
// RepeatingTimer as a member variable of the class for which you wish to
// receive timer events.
//
// Sample RepeatingTimer usage:
//
//   class MyClass {
//    public:
//     void StartDoingStuff() {
//       timer_.Start(TimeDelta::FromSeconds(1), this, &MyClass::DoStuff);
//     }
//     void StopDoingStuff() {
//       timer_.Stop();
//     }
//    private:
//     void DoStuff() {
//       // This method is called every second to do stuff.
//       ...
//     }
//     base::RepeatingTimer<MyClass> timer_;
//   };
//
// Both OneShotTimer and RepeatingTimer also support a Reset method, which
// allows you to easily defer the timer event until the timer delay passes once
// again.  So, in the above example, if 0.5 seconds have already passed,
// calling Reset on timer_ would postpone DoStuff by another 1 second.  In
// other words, Reset is shorthand for calling Stop and then Start again with
// the same arguments.

#ifndef BASE_TIMER_H_
#define BASE_TIMER_H_
#pragma once

// IMPORTANT: If you change timer code, make sure that all tests (including
// disabled ones) from timer_unittests.cc pass locally. Some are disabled
// because they're flaky on the buildbot, but when you run them locally you
// should be able to tell the difference.

#include "base/base_api.h"
#include "base/logging.h"
#include "base/task.h"
#include "base/time.h"

class MessageLoop;

namespace base {

//-----------------------------------------------------------------------------
// This class is an implementation detail of OneShotTimer and RepeatingTimer.
// Please do not use this class directly.
//
// This class exists to share code between BaseTimer<T> template instantiations.
//
class BASE_API BaseTimer_Helper {
 public:
  // Stops the timer.
  ~BaseTimer_Helper() {
    OrphanDelayedTask();
  }

  // Returns true if the timer is running (i.e., not stopped).
  bool IsRunning() const {
    return delayed_task_ != NULL;
  }

  // Returns the current delay for this timer.  May only call this method when
  // the timer is running!
  TimeDelta GetCurrentDelay() const {
    DCHECK(IsRunning());
    return delayed_task_->delay_;
  }

 protected:
  BaseTimer_Helper() : delayed_task_(NULL) {}

  // We have access to the timer_ member so we can orphan this task.
  class TimerTask : public Task {
   public:
    explicit TimerTask(TimeDelta delay) : timer_(NULL), delay_(delay) {
    }
    virtual ~TimerTask() {}
    BaseTimer_Helper* timer_;
    TimeDelta delay_;
  };

  // Used to orphan delayed_task_ so that when it runs it does nothing.
  void OrphanDelayedTask();

  // Used to initiated a new delayed task.  This has the side-effect of
  // orphaning delayed_task_ if it is non-null.
  void InitiateDelayedTask(TimerTask* timer_task);

  TimerTask* delayed_task_;

  DISALLOW_COPY_AND_ASSIGN(BaseTimer_Helper);
};

//-----------------------------------------------------------------------------
// This class is an implementation detail of OneShotTimer and RepeatingTimer.
// Please do not use this class directly.
template <class Receiver, bool kIsRepeating>
class BaseTimer : public BaseTimer_Helper {
 public:
  typedef void (Receiver::*ReceiverMethod)();

  // Call this method to start the timer.  It is an error to call this method
  // while the timer is already running.
  void Start(TimeDelta delay, Receiver* receiver, ReceiverMethod method) {
    DCHECK(!IsRunning());
    InitiateDelayedTask(new TimerTask(delay, receiver, method));
  }

  // Call this method to stop the timer.  It is a no-op if the timer is not
  // running.
  void Stop() {
    OrphanDelayedTask();
  }

  // Call this method to reset the timer delay of an already running timer.
  void Reset() {
    DCHECK(IsRunning());
    InitiateDelayedTask(static_cast<TimerTask*>(delayed_task_)->Clone());
  }

 private:
  typedef BaseTimer<Receiver, kIsRepeating> SelfType;

  class TimerTask : public BaseTimer_Helper::TimerTask {
   public:
    TimerTask(TimeDelta delay, Receiver* receiver, ReceiverMethod method)
        : BaseTimer_Helper::TimerTask(delay),
          receiver_(receiver),
          method_(method) {
    }

    virtual ~TimerTask() {
      // This task may be getting cleared because the MessageLoop has been
      // destructed.  If so, don't leave the Timer with a dangling pointer
      // to this now-defunct task.
      ClearBaseTimer();
    }

    virtual void Run() {
      if (!timer_)  // timer_ is null if we were orphaned.
        return;
      if (kIsRepeating)
        ResetBaseTimer();
      else
        ClearBaseTimer();
      DispatchToMethod(receiver_, method_, Tuple0());
    }

    TimerTask* Clone() const {
      return new TimerTask(delay_, receiver_, method_);
    }

   private:
    // Inform the Base that the timer is no longer active.
    void ClearBaseTimer() {
      if (timer_) {
        SelfType* self = static_cast<SelfType*>(timer_);
        // It is possible that the Timer has already been reset, and that this
        // Task is old.  So, if the Timer points to a different task, assume
        // that the Timer has already taken care of properly setting the task.
        if (self->delayed_task_ == this)
          self->delayed_task_ = NULL;
        // By now the delayed_task_ in the Timer does not point to us anymore.
        // We should reset our own timer_ because the Timer can not do this
        // for us in its destructor.
        timer_ = NULL;
      }
    }

    // Inform the Base that we're resetting the timer.
    void ResetBaseTimer() {
      DCHECK(timer_);
      DCHECK(kIsRepeating);
      SelfType* self = static_cast<SelfType*>(timer_);
      self->Reset();
    }

    Receiver* receiver_;
    ReceiverMethod method_;
  };
};

//-----------------------------------------------------------------------------
// A simple, one-shot timer.  See usage notes at the top of the file.
template <class Receiver>
class OneShotTimer : public BaseTimer<Receiver, false> {};

//-----------------------------------------------------------------------------
// A simple, repeating timer.  See usage notes at the top of the file.
template <class Receiver>
class RepeatingTimer : public BaseTimer<Receiver, true> {};

//-----------------------------------------------------------------------------
// A Delay timer is like The Button from Lost. Once started, you have to keep
// calling Reset otherwise it will call the given method in the MessageLoop
// thread.
//
// Once created, it is inactive until Reset is called. Once |delay| seconds have
// passed since the last call to Reset, the callback is made. Once the callback
// has been made, it's inactive until Reset is called again.
//
// If destroyed, the timeout is canceled and will not occur even if already
// inflight.
template <class Receiver>
class DelayTimer {
 public:
  typedef void (Receiver::*ReceiverMethod)();

  DelayTimer(TimeDelta delay, Receiver* receiver, ReceiverMethod method)
      : receiver_(receiver),
        method_(method),
        delay_(delay) {
  }

  void Reset() {
    DelayFor(delay_);
  }

 private:
  void DelayFor(TimeDelta delay) {
    trigger_time_ = TimeTicks::Now() + delay;

    // If we already have a timer that will expire at or before the given delay,
    // then we have nothing more to do now.
    if (timer_.IsRunning() && timer_.GetCurrentDelay() <= delay)
      return;

    // The timer isn't running, or will expire too late, so restart it.
    timer_.Stop();
    timer_.Start(delay, this, &DelayTimer<Receiver>::Check);
  }

  void Check() {
    if (trigger_time_.is_null())
      return;

    // If we have not waited long enough, then wait some more.
    const TimeTicks now = TimeTicks::Now();
    if (now < trigger_time_) {
      DelayFor(trigger_time_ - now);
      return;
    }

    (receiver_->*method_)();
  }

  Receiver *const receiver_;
  const ReceiverMethod method_;
  const TimeDelta delay_;

  OneShotTimer<DelayTimer<Receiver> > timer_;
  TimeTicks trigger_time_;
};

}  // namespace base

#endif  // BASE_TIMER_H_