1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
|
// Copyright 2009, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "googleurl/src/url_canon_ip.h"
#include <stdlib.h>
#include "base/basictypes.h"
#include "base/logging.h"
#include "googleurl/src/url_canon_internal.h"
namespace url_canon {
namespace {
// Converts one of the character types that represent a numerical base to the
// corresponding base.
int BaseForType(SharedCharTypes type) {
switch (type) {
case CHAR_HEX:
return 16;
case CHAR_DEC:
return 10;
case CHAR_OCT:
return 8;
default:
return 0;
}
}
template<typename CHAR, typename UCHAR>
bool DoFindIPv4Components(const CHAR* spec,
const url_parse::Component& host,
url_parse::Component components[4]) {
int cur_component = 0; // Index of the component we're working on.
int cur_component_begin = host.begin; // Start of the current component.
int end = host.end();
for (int i = host.begin; /* nothing */; i++) {
if (i == end || spec[i] == '.') {
// Found the end of the current component.
int component_len = i - cur_component_begin;
components[cur_component] =
url_parse::Component(cur_component_begin, component_len);
// The next component starts after the dot.
cur_component_begin = i + 1;
cur_component++;
// Don't allow empty components (two dots in a row), except we may
// allow an empty component at the end (this would indicate that the
// input ends in a dot). We also want to error if the component is
// empty and it's the only component (cur_component == 1).
if (component_len == 0 && (i != end || cur_component == 1))
return false;
if (i == end)
break; // End of the input.
if (cur_component == 4) {
// Anything else after the 4th component is an error unless it is a
// dot that would otherwise be treated as the end of input.
if (spec[i] == '.' && i + 1 == end)
break;
return false;
}
} else if (static_cast<UCHAR>(spec[i]) >= 0x80 ||
!IsIPv4Char(static_cast<unsigned char>(spec[i]))) {
// Invalid character for an IPv4 address.
return false;
}
}
// Fill in any unused components.
while (cur_component < 4)
components[cur_component++] = url_parse::Component();
return true;
}
// Converts an IPv4 component to a 32-bit number, while checking for overflow.
//
// Possible return values:
// - IPV4 - The number was valid, and did not overflow.
// - BROKEN - The input was numeric, but too large for a 32-bit field.
// - NEUTRAL - Input was not numeric.
//
// The input is assumed to be ASCII. FindIPv4Components should have stripped
// out any input that is greater than 7 bits. The components are assumed
// to be non-empty.
template<typename CHAR>
CanonHostInfo::Family IPv4ComponentToNumber(
const CHAR* spec,
const url_parse::Component& component,
uint32* number) {
// Figure out the base
SharedCharTypes base;
int base_prefix_len = 0; // Size of the prefix for this base.
if (spec[component.begin] == '0') {
// Either hex or dec, or a standalone zero.
if (component.len == 1) {
base = CHAR_DEC;
} else if (spec[component.begin + 1] == 'X' ||
spec[component.begin + 1] == 'x') {
base = CHAR_HEX;
base_prefix_len = 2;
} else {
base = CHAR_OCT;
base_prefix_len = 1;
}
} else {
base = CHAR_DEC;
}
// Extend the prefix to consume all leading zeros.
while (base_prefix_len < component.len &&
spec[component.begin + base_prefix_len] == '0')
base_prefix_len++;
// Put the component, minus any base prefix, into a NULL-terminated buffer so
// we can call the standard library. Because leading zeros have already been
// discarded, filling the entire buffer is guaranteed to trigger the 32-bit
// overflow check.
const int kMaxComponentLen = 16;
char buf[kMaxComponentLen + 1]; // digits + '\0'
int dest_i = 0;
for (int i = component.begin + base_prefix_len; i < component.end(); i++) {
// We know the input is 7-bit, so convert to narrow (if this is the wide
// version of the template) by casting.
char input = static_cast<char>(spec[i]);
// Validate that this character is OK for the given base.
if (!IsCharOfType(input, base))
return CanonHostInfo::NEUTRAL;
// Fill the buffer, if there's space remaining. This check allows us to
// verify that all characters are numeric, even those that don't fit.
if (dest_i < kMaxComponentLen)
buf[dest_i++] = input;
}
buf[dest_i] = '\0';
// Use the 64-bit strtoi so we get a big number (no hex, decimal, or octal
// number can overflow a 64-bit number in <= 16 characters).
uint64 num = _strtoui64(buf, NULL, BaseForType(base));
// Check for 32-bit overflow.
if (num > kuint32max)
return CanonHostInfo::BROKEN;
// No overflow. Success!
*number = static_cast<uint32>(num);
return CanonHostInfo::IPV4;
}
// Writes the given address (with each character representing one dotted
// part of an IPv4 address) to the output, and updating |*out_host| to
// identify the added portion.
void AppendIPv4Address(const unsigned char address[4],
CanonOutput* output,
url_parse::Component* out_host) {
out_host->begin = output->length();
for (int i = 0; i < 4; i++) {
char str[16];
_itoa_s(address[i], str, 10);
for (int ch = 0; str[ch] != 0; ch++)
output->push_back(str[ch]);
if (i != 3)
output->push_back('.');
}
out_host->len = output->length() - out_host->begin;
}
// See declaration of IPv4AddressToNumber for documentation.
template<typename CHAR>
CanonHostInfo::Family DoIPv4AddressToNumber(const CHAR* spec,
const url_parse::Component& host,
unsigned char address[4],
int* num_ipv4_components) {
// The identified components. Not all may exist.
url_parse::Component components[4];
if (!FindIPv4Components(spec, host, components))
return CanonHostInfo::NEUTRAL;
// Convert existing components to digits. Values up to
// |existing_components| will be valid.
uint32 component_values[4];
int existing_components = 0;
for (int i = 0; i < 4; i++) {
if (components[i].len <= 0)
continue;
CanonHostInfo::Family family = IPv4ComponentToNumber(
spec, components[i], &component_values[existing_components]);
// Stop if we hit an invalid non-empty component.
if (family != CanonHostInfo::IPV4)
return family;
existing_components++;
}
// Use that sequence of numbers to fill out the 4-component IP address.
// First, process all components but the last, while making sure each fits
// within an 8-bit field.
for (int i = 0; i < existing_components - 1; i++) {
if (component_values[i] > kuint8max)
return CanonHostInfo::BROKEN;
address[i] = static_cast<unsigned char>(component_values[i]);
}
// Next, consume the last component to fill in the remaining bytes.
uint32 last_value = component_values[existing_components - 1];
for (int i = 3; i >= existing_components - 1; i--) {
address[i] = static_cast<unsigned char>(last_value);
last_value >>= 8;
}
// If the last component has residual bits, report overflow.
if (last_value != 0)
return CanonHostInfo::BROKEN;
// Tell the caller how many components we saw.
*num_ipv4_components = existing_components;
// Success!
return CanonHostInfo::IPV4;
}
// Return true if we've made a final IPV4/BROKEN decision, false if the result
// is NEUTRAL, and we could use a second opinion.
template<typename CHAR, typename UCHAR>
bool DoCanonicalizeIPv4Address(const CHAR* spec,
const url_parse::Component& host,
CanonOutput* output,
CanonHostInfo* host_info) {
unsigned char address[4];
host_info->family = IPv4AddressToNumber(
spec, host, address, &host_info->num_ipv4_components);
switch (host_info->family) {
case CanonHostInfo::IPV4:
// Definitely an IPv4 address.
AppendIPv4Address(address, output, &host_info->out_host);
return true;
case CanonHostInfo::BROKEN:
// Definitely broken.
return true;
default:
// Could be IPv6 or a hostname.
return false;
}
}
// Helper class that describes the main components of an IPv6 input string.
// See the following examples to understand how it breaks up an input string:
//
// [Example 1]: input = "[::aa:bb]"
// ==> num_hex_components = 2
// ==> hex_components[0] = Component(3,2) "aa"
// ==> hex_components[1] = Component(6,2) "bb"
// ==> index_of_contraction = 0
// ==> ipv4_component = Component(0, -1)
//
// [Example 2]: input = "[1:2::3:4:5]"
// ==> num_hex_components = 5
// ==> hex_components[0] = Component(1,1) "1"
// ==> hex_components[1] = Component(3,1) "2"
// ==> hex_components[2] = Component(6,1) "3"
// ==> hex_components[3] = Component(8,1) "4"
// ==> hex_components[4] = Component(10,1) "5"
// ==> index_of_contraction = 2
// ==> ipv4_component = Component(0, -1)
//
// [Example 3]: input = "[::ffff:192.168.0.1]"
// ==> num_hex_components = 1
// ==> hex_components[0] = Component(3,4) "ffff"
// ==> index_of_contraction = 0
// ==> ipv4_component = Component(8, 11) "192.168.0.1"
//
// [Example 4]: input = "[1::]"
// ==> num_hex_components = 1
// ==> hex_components[0] = Component(1,1) "1"
// ==> index_of_contraction = 1
// ==> ipv4_component = Component(0, -1)
//
// [Example 5]: input = "[::192.168.0.1]"
// ==> num_hex_components = 0
// ==> index_of_contraction = 0
// ==> ipv4_component = Component(8, 11) "192.168.0.1"
//
struct IPv6Parsed {
// Zero-out the parse information.
void reset() {
num_hex_components = 0;
index_of_contraction = -1;
ipv4_component.reset();
}
// There can be up to 8 hex components (colon separated) in the literal.
url_parse::Component hex_components[8];
// The count of hex components present. Ranges from [0,8].
int num_hex_components;
// The index of the hex component that the "::" contraction precedes, or
// -1 if there is no contraction.
int index_of_contraction;
// The range of characters which are an IPv4 literal.
url_parse::Component ipv4_component;
};
// Parse the IPv6 input string. If parsing succeeded returns true and fills
// |parsed| with the information. If parsing failed (because the input is
// invalid) returns false.
template<typename CHAR, typename UCHAR>
bool DoParseIPv6(const CHAR* spec,
const url_parse::Component& host,
IPv6Parsed* parsed) {
// Zero-out the info.
parsed->reset();
if (!host.is_nonempty())
return false;
// The index for start and end of address range (no brackets).
int begin = host.begin;
int end = host.end();
int cur_component_begin = begin; // Start of the current component.
// Scan through the input, searching for hex components, "::" contractions,
// and IPv4 components.
for (int i = begin; /* i <= end */; i++) {
bool is_colon = spec[i] == ':';
bool is_contraction = is_colon && i < end - 1 && spec[i + 1] == ':';
// We reached the end of the current component if we encounter a colon
// (separator between hex components, or start of a contraction), or end of
// input.
if (is_colon || i == end) {
int component_len = i - cur_component_begin;
// A component should not have more than 4 hex digits.
if (component_len > 4)
return false;
// Don't allow empty components.
if (component_len == 0) {
// The exception is when contractions appear at beginning of the
// input or at the end of the input.
if (!((is_contraction && i == begin) || (i == end &&
parsed->index_of_contraction == parsed->num_hex_components)))
return false;
}
// Add the hex component we just found to running list.
if (component_len > 0) {
// Can't have more than 8 components!
if (parsed->num_hex_components >= 8)
return false;
parsed->hex_components[parsed->num_hex_components++] =
url_parse::Component(cur_component_begin, component_len);
}
}
if (i == end)
break; // Reached the end of the input, DONE.
// We found a "::" contraction.
if (is_contraction) {
// There can be at most one contraction in the literal.
if (parsed->index_of_contraction != -1)
return false;
parsed->index_of_contraction = parsed->num_hex_components;
++i; // Consume the colon we peeked.
}
if (is_colon) {
// Colons are separators between components, keep track of where the
// current component started (after this colon).
cur_component_begin = i + 1;
} else {
if (static_cast<UCHAR>(spec[i]) >= 0x80)
return false; // Not ASCII.
if (!IsHexChar(static_cast<unsigned char>(spec[i]))) {
// Regular components are hex numbers. It is also possible for
// a component to be an IPv4 address in dotted form.
if (IsIPv4Char(static_cast<unsigned char>(spec[i]))) {
// Since IPv4 address can only appear at the end, assume the rest
// of the string is an IPv4 address. (We will parse this separately
// later).
parsed->ipv4_component = url_parse::Component(
cur_component_begin, end - cur_component_begin);
break;
} else {
// The character was neither a hex digit, nor an IPv4 character.
return false;
}
}
}
}
return true;
}
// Verifies the parsed IPv6 information, checking that the various components
// add up to the right number of bits (hex components are 16 bits, while
// embedded IPv4 formats are 32 bits, and contractions are placeholdes for
// 16 or more bits). Returns true if sizes match up, false otherwise. On
// success writes the length of the contraction (if any) to
// |out_num_bytes_of_contraction|.
bool CheckIPv6ComponentsSize(const IPv6Parsed& parsed,
int* out_num_bytes_of_contraction) {
// Each group of four hex digits contributes 16 bits.
int num_bytes_without_contraction = parsed.num_hex_components * 2;
// If an IPv4 address was embedded at the end, it contributes 32 bits.
if (parsed.ipv4_component.is_valid())
num_bytes_without_contraction += 4;
// If there was a "::" contraction, its size is going to be:
// MAX([16bits], [128bits] - num_bytes_without_contraction).
int num_bytes_of_contraction = 0;
if (parsed.index_of_contraction != -1) {
num_bytes_of_contraction = 16 - num_bytes_without_contraction;
if (num_bytes_of_contraction < 2)
num_bytes_of_contraction = 2;
}
// Check that the numbers add up.
if (num_bytes_without_contraction + num_bytes_of_contraction != 16)
return false;
*out_num_bytes_of_contraction = num_bytes_of_contraction;
return true;
}
// Converts a hex comonent into a number. This cannot fail since the caller has
// already verified that each character in the string was a hex digit, and
// that there were no more than 4 characters.
template<typename CHAR>
uint16 IPv6HexComponentToNumber(const CHAR* spec,
const url_parse::Component& component) {
DCHECK(component.len <= 4);
// Copy the hex string into a C-string.
char buf[5];
for (int i = 0; i < component.len; ++i)
buf[i] = static_cast<char>(spec[component.begin + i]);
buf[component.len] = '\0';
// Convert it to a number (overflow is not possible, since with 4 hex
// characters we can at most have a 16 bit number).
return static_cast<uint16>(_strtoui64(buf, NULL, 16));
}
// Converts an IPv6 address to a 128-bit number (network byte order), returning
// true on success. False means that the input was not a valid IPv6 address.
template<typename CHAR, typename UCHAR>
bool DoIPv6AddressToNumber(const CHAR* spec,
const url_parse::Component& host,
unsigned char address[16]) {
// Make sure the component is bounded by '[' and ']'.
int end = host.end();
if (!host.is_nonempty() || spec[host.begin] != '[' || spec[end - 1] != ']')
return false;
// Exclude the square brackets.
url_parse::Component ipv6_comp(host.begin + 1, host.len - 2);
// Parse the IPv6 address -- identify where all the colon separated hex
// components are, the "::" contraction, and the embedded IPv4 address.
IPv6Parsed ipv6_parsed;
if (!DoParseIPv6<CHAR, UCHAR>(spec, ipv6_comp, &ipv6_parsed))
return false;
// Do some basic size checks to make sure that the address doesn't
// specify more than 128 bits or fewer than 128 bits. This also resolves
// how may zero bytes the "::" contraction represents.
int num_bytes_of_contraction;
if (!CheckIPv6ComponentsSize(ipv6_parsed, &num_bytes_of_contraction))
return false;
int cur_index_in_address = 0;
// Loop through each hex components, and contraction in order.
for (int i = 0; i <= ipv6_parsed.num_hex_components; ++i) {
// Append the contraction if it appears before this component.
if (i == ipv6_parsed.index_of_contraction) {
for (int j = 0; j < num_bytes_of_contraction; ++j)
address[cur_index_in_address++] = 0;
}
// Append the hex component's value.
if (i != ipv6_parsed.num_hex_components) {
// Get the 16-bit value for this hex component.
uint16 number = IPv6HexComponentToNumber<CHAR>(
spec, ipv6_parsed.hex_components[i]);
// Append to |address|, in network byte order.
address[cur_index_in_address++] = (number & 0xFF00) >> 8;
address[cur_index_in_address++] = (number & 0x00FF);
}
}
// If there was an IPv4 section, convert it into a 32-bit number and append
// it to |address|.
if (ipv6_parsed.ipv4_component.is_valid()) {
// We only allow the embedded IPv4 syntax to be used for "compat" and
// "mapped" formats:
// "compat" ==> 0:0:0:0:0:ffff:<IPv4-literal>
// "mapped" ==> 0:0:0:0:0:0000:<IPv4-literal>
for (int j = 0; j < 10; ++j) {
if (address[j] != 0)
return false;
}
if (!((address[10] == 0 && address[11] == 0) ||
(address[10] == 0xFF && address[11] == 0xFF)))
return false;
// Append the 32-bit number to |address|.
int ignored_num_ipv4_components;
if (CanonHostInfo::IPV4 !=
IPv4AddressToNumber(spec,
ipv6_parsed.ipv4_component,
&address[cur_index_in_address],
&ignored_num_ipv4_components))
return false;
}
return true;
}
// Searches for the longest sequence of zeros in |address|, and writes the
// range into |contraction_range|. The run of zeros must be at least 16 bits,
// and if there is a tie the first is chosen.
void ChooseIPv6ContractionRange(const unsigned char address[16],
url_parse::Component* contraction_range) {
// The longest run of zeros in |address| seen so far.
url_parse::Component max_range;
// The current run of zeros in |address| being iterated over.
url_parse::Component cur_range;
for (int i = 0; i < 16; i += 2) {
// Test for 16 bits worth of zero.
bool is_zero = (address[i] == 0 && address[i + 1] == 0);
if (is_zero) {
// Add the zero to the current range (or start a new one).
if (!cur_range.is_valid())
cur_range = url_parse::Component(i, 0);
cur_range.len += 2;
}
if (!is_zero || i == 14) {
// Just completed a run of zeros. If the run is greater than 16 bits,
// it is a candidate for the contraction.
if (cur_range.len > 2 && cur_range.len > max_range.len) {
max_range = cur_range;
}
cur_range.reset();
}
}
*contraction_range = max_range;
}
// Return true if we've made a final IPV6/BROKEN decision, false if the result
// is NEUTRAL, and we could use a second opinion.
template<typename CHAR, typename UCHAR>
bool DoCanonicalizeIPv6Address(const CHAR* spec,
const url_parse::Component& host,
CanonOutput* output,
CanonHostInfo* host_info) {
// Turn the IP address into a 128 bit number.
unsigned char address[16];
if (!IPv6AddressToNumber(spec, host, address)) {
// If it's not an IPv6 address, scan for characters that should *only*
// exist in an IPv6 address.
for (int i = host.begin; i < host.end(); i++) {
switch (spec[i]) {
case '[':
case ']':
case ':':
host_info->family = CanonHostInfo::BROKEN;
return true;
}
}
// No invalid characters. Could still be IPv4 or a hostname.
host_info->family = CanonHostInfo::NEUTRAL;
return false;
}
host_info->out_host.begin = output->length();
output->push_back('[');
// We will now output the address according to the rules in:
// http://tools.ietf.org/html/draft-kawamura-ipv6-text-representation-01#section-4
// Start by finding where to place the "::" contraction (if any).
url_parse::Component contraction_range;
ChooseIPv6ContractionRange(address, &contraction_range);
for (int i = 0; i <= 14;) {
// We check 2 bytes at a time, from bytes (0, 1) to (14, 15), inclusive.
DCHECK(i % 2 == 0);
if (i == contraction_range.begin && contraction_range.len > 0) {
// Jump over the contraction.
if (i == 0)
output->push_back(':');
output->push_back(':');
i = contraction_range.end();
} else {
// Consume the next 16 bits from |address|.
int x = address[i] << 8 | address[i + 1];
i += 2;
// Stringify the 16 bit number (at most requires 4 hex digits).
char str[5];
_itoa_s(x, str, 16);
for (int ch = 0; str[ch] != 0; ++ch)
output->push_back(str[ch]);
// Put a colon after each number, except the last.
if (i < 16)
output->push_back(':');
}
}
output->push_back(']');
host_info->out_host.len = output->length() - host_info->out_host.begin;
host_info->family = CanonHostInfo::IPV6;
return true;
}
} // namespace
bool FindIPv4Components(const char* spec,
const url_parse::Component& host,
url_parse::Component components[4]) {
return DoFindIPv4Components<char, unsigned char>(spec, host, components);
}
bool FindIPv4Components(const char16* spec,
const url_parse::Component& host,
url_parse::Component components[4]) {
return DoFindIPv4Components<char16, char16>(spec, host, components);
}
void CanonicalizeIPAddress(const char* spec,
const url_parse::Component& host,
CanonOutput* output,
CanonHostInfo* host_info) {
if (DoCanonicalizeIPv4Address<char, unsigned char>(
spec, host, output, host_info))
return;
if (DoCanonicalizeIPv6Address<char, unsigned char>(
spec, host, output, host_info))
return;
}
void CanonicalizeIPAddress(const char16* spec,
const url_parse::Component& host,
CanonOutput* output,
CanonHostInfo* host_info) {
if (DoCanonicalizeIPv4Address<char16, char16>(
spec, host, output, host_info))
return;
if (DoCanonicalizeIPv6Address<char16, char16>(
spec, host, output, host_info))
return;
}
CanonHostInfo::Family IPv4AddressToNumber(const char* spec,
const url_parse::Component& host,
unsigned char address[4],
int* num_ipv4_components) {
return DoIPv4AddressToNumber<char>(spec, host, address, num_ipv4_components);
}
CanonHostInfo::Family IPv4AddressToNumber(const char16* spec,
const url_parse::Component& host,
unsigned char address[4],
int* num_ipv4_components) {
return DoIPv4AddressToNumber<char16>(
spec, host, address, num_ipv4_components);
}
bool IPv6AddressToNumber(const char* spec,
const url_parse::Component& host,
unsigned char address[16]) {
return DoIPv6AddressToNumber<char, unsigned char>(spec, host, address);
}
bool IPv6AddressToNumber(const char16* spec,
const url_parse::Component& host,
unsigned char address[16]) {
return DoIPv6AddressToNumber<char16, char16>(spec, host, address);
}
} // namespace url_canon
|