1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
|
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This helper binary is only used for testing Chrome's SSL stack.
#include <sys/types.h>
#include <sys/socket.h>
#include <openssl/bio.h>
#include <openssl/ssl.h>
#include <openssl/err.h>
static const char kDefaultPEMFile[] = "net/data/ssl/certificates/ok_cert.pem";
// Server Name Indication callback from OpenSSL
static int sni_cb(SSL *s, int *ad, void *arg) {
const char* servername = SSL_get_servername(s, TLSEXT_NAMETYPE_host_name);
if (servername && strcmp(servername, "test.example.com") == 0)
*reinterpret_cast<bool*>(arg) = true;
return SSL_TLSEXT_ERR_OK;
}
// Client certificate verification callback from OpenSSL
static int verify_cb(int preverify_ok, X509_STORE_CTX *ctx) {
return 1;
}
// Next Protocol Negotiation callback from OpenSSL
static int next_proto_cb(SSL *ssl, const unsigned char **out,
unsigned int *outlen, void *arg) {
bool* npn_mispredict = reinterpret_cast<bool*>(arg);
static char kProtos[] = "\003foo\003bar";
static char kProtos2[] = "\003baz\003boo";
static unsigned count = 0;
if (!*npn_mispredict || count == 0) {
*out = (const unsigned char*) kProtos;
*outlen = sizeof(kProtos) - 1;
} else {
*out = (const unsigned char*) kProtos2;
*outlen = sizeof(kProtos2) - 1;
}
count++;
return SSL_TLSEXT_ERR_OK;
}
int
main(int argc, char **argv) {
SSL_library_init();
ERR_load_crypto_strings();
OpenSSL_add_all_algorithms();
SSL_load_error_strings();
bool sni = false, sni_good = false, snap_start = false;
bool snap_start_recovery = false, sslv3 = false, session_tickets = false;
bool fail_resume = false, client_cert = false, npn = false;
bool npn_mispredict = false;
const char* key_file = kDefaultPEMFile;
const char* cert_file = kDefaultPEMFile;
for (int i = 1; i < argc; i++) {
if (strcmp(argv[i], "sni") == 0) {
// Require SNI
sni = true;
} else if (strcmp(argv[i], "snap-start") == 0) {
// Support Snap Start
snap_start = true;
} else if (strcmp(argv[i], "snap-start-recovery") == 0) {
// Support Snap Start, but always trigger a recovery
snap_start = true;
snap_start_recovery = true;
} else if (strcmp(argv[i], "sslv3") == 0) {
// Use SSLv3
sslv3 = true;
} else if (strcmp(argv[i], "session-tickets") == 0) {
// Enable Session Tickets
session_tickets = true;
} else if (strcmp(argv[i], "fail-resume") == 0) {
// Always fail to resume sessions
fail_resume = true;
} else if (strcmp(argv[i], "client-cert") == 0) {
// Request a client certificate
client_cert = true;
} else if (strcmp(argv[i], "npn") == 0) {
// Advertise NPN
npn = true;
} else if (strcmp(argv[i], "npn-mispredict") == 0) {
// Advertise NPN
npn = true;
npn_mispredict = true;
} else if (strcmp(argv[i], "--key-file") == 0) {
// Use alternative key file
i++;
if (i == argc) {
fprintf(stderr, "Missing argument to --key-file\n");
return 1;
}
key_file = argv[i];
} else if (strcmp(argv[i], "--cert-file") == 0) {
// Use alternative certificate file
i++;
if (i == argc) {
fprintf(stderr, "Missing argument to --cert-file\n");
return 1;
}
cert_file = argv[i];
} else {
fprintf(stderr, "Unknown argument: %s\n", argv[i]);
return 1;
}
}
SSL_CTX* ctx;
if (sslv3) {
ctx = SSL_CTX_new(SSLv3_server_method());
} else {
ctx = SSL_CTX_new(TLSv1_server_method());
}
if (sni) {
SSL_CTX_set_tlsext_servername_callback(ctx, sni_cb);
SSL_CTX_set_tlsext_servername_arg(ctx, &sni_good);
}
BIO* key = BIO_new(BIO_s_file());
if (BIO_read_filename(key, key_file) <= 0) {
fprintf(stderr, "Failed to read %s\n", key_file);
return 1;
}
EVP_PKEY *pkey = PEM_read_bio_PrivateKey(key, NULL, NULL, NULL);
if (!pkey) {
fprintf(stderr, "Failed to parse %s\n", key_file);
return 1;
}
BIO_free(key);
BIO* cert = BIO_new(BIO_s_file());
if (BIO_read_filename(cert, cert_file) <= 0) {
fprintf(stderr, "Failed to read %s\n", cert_file);
return 1;
}
X509 *pcert = PEM_read_bio_X509_AUX(cert, NULL, NULL, NULL);
if (!pcert) {
fprintf(stderr, "Failed to parse %s\n", cert_file);
return 1;
}
BIO_free(cert);
if (SSL_CTX_use_certificate(ctx, pcert) <= 0) {
fprintf(stderr, "Failed to load %s\n", cert_file);
return 1;
}
if (SSL_CTX_use_PrivateKey(ctx, pkey) <= 0) {
fprintf(stderr, "Failed to load %s\n", key_file);
return 1;
}
if (!SSL_CTX_check_private_key(ctx)) {
fprintf(stderr, "Public and private keys don't match\n");
return 1;
}
if (client_cert)
SSL_CTX_set_verify(ctx, SSL_VERIFY_PEER, verify_cb);
if (session_tickets)
SSL_CTX_set_session_cache_mode(ctx, SSL_SESS_CACHE_BOTH);
if (snap_start) {
static const unsigned char orbit[8] = {1, 2, 3, 4, 5, 6, 7, 8};
SSL_CTX_set_snap_start_orbit(ctx, orbit);
}
if (npn)
SSL_CTX_set_next_protos_advertised_cb(ctx, next_proto_cb, &npn_mispredict);
unsigned connection_limit = 1;
if (snap_start || session_tickets)
connection_limit = 2;
if (npn_mispredict)
connection_limit = 3;
for (unsigned connections = 0; connections < connection_limit;
connections++) {
const int fd = accept(3, NULL, NULL);
SSL* server = SSL_new(ctx);
BIO* bio = BIO_new_socket(fd, 1 /* take ownership of fd */);
SSL_set_bio(server, bio, bio);
if (fail_resume) {
SSL_set_session_id_context(server, (unsigned char*) &connections,
sizeof(connections));
}
int err;
for (;;) {
const int ret = SSL_accept(server);
if (ret == 1)
break;
err = SSL_get_error(server, ret);
if (err == SSL_ERROR_WANT_READ)
continue;
if (err == SSL_ERROR_SERVER_RANDOM_VALIDATION_PENDING && snap_start) {
SSL_set_suggested_server_random_validity(
server, !snap_start_recovery);
continue;
}
ERR_print_errors_fp(stderr);
fprintf(stderr, "SSL_accept failed: %d\n", err);
return 1;
}
if (sni && !sni_good) {
fprintf(stderr, "SNI failed\n");
return 1;
}
if (npn) {
const unsigned char *data, *expected_data;
unsigned len, expected_len;
SSL_get0_next_proto_negotiated(server, &data, &len);
if (!npn_mispredict || connections == 0) {
expected_data = (unsigned char*) "foo";
expected_len = 3;
} else {
expected_data = (unsigned char*) "baz";
expected_len = 3;
}
if (len != expected_len || memcmp(data, expected_data, len) != 0) {
fprintf(stderr, "Bad NPN: %d\n", len);
return 1;
}
}
unsigned char buffer[6];
int ret = SSL_read(server, buffer, sizeof(buffer));
if (ret == -1) {
err = SSL_get_error(server, ret);
ERR_print_errors_fp(stderr);
fprintf(stderr, "SSL_read failed: %d\n", err);
}
if (memcmp(buffer, "hello!", sizeof(buffer)) == 0) {
SSL_write(server, "goodbye!", 8);
}
SSL_shutdown(server);
SSL_shutdown(server);
}
SSL_CTX_free(ctx);
return 0;
}
|