summaryrefslogtreecommitdiffstats
path: root/third_party/libjingle/source/talk/p2p/base/p2ptransportchannel.cc
blob: 47b1e9145e44e23793a23dcbd192bdd68ab39257 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
/*
 * libjingle
 * Copyright 2004--2005, Google Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *  1. Redistributions of source code must retain the above copyright notice,
 *     this list of conditions and the following disclaimer.
 *  2. Redistributions in binary form must reproduce the above copyright notice,
 *     this list of conditions and the following disclaimer in the documentation
 *     and/or other materials provided with the distribution.
 *  3. The name of the author may not be used to endorse or promote products
 *     derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "talk/p2p/base/p2ptransportchannel.h"

#include <set>
#include "talk/base/common.h"
#include "talk/base/logging.h"
#include "talk/p2p/base/common.h"

namespace {

// messages for queuing up work for ourselves
const uint32 MSG_SORT = 1;
const uint32 MSG_PING = 2;
const uint32 MSG_ALLOCATE = 3;

// When the socket is unwritable, we will use 10 Kbps (ignoring IP+UDP headers)
// for pinging.  When the socket is writable, we will use only 1 Kbps because
// we don't want to degrade the quality on a modem.  These numbers should work
// well on a 28.8K modem, which is the slowest connection on which the voice
// quality is reasonable at all.
static const uint32 PING_PACKET_SIZE = 60 * 8;
static const uint32 WRITABLE_DELAY = 1000 * PING_PACKET_SIZE / 1000;  // 480ms
static const uint32 UNWRITABLE_DELAY = 1000 * PING_PACKET_SIZE / 10000;  // 50ms

// If there is a current writable connection, then we will also try hard to
// make sure it is pinged at this rate.
static const uint32 MAX_CURRENT_WRITABLE_DELAY = 900;  // 2*WRITABLE_DELAY - bit

// The minimum improvement in RTT that justifies a switch.
static const double kMinImprovement = 10;

// Amount of time that we wait when *losing* writability before we try doing
// another allocation.
static const int kAllocateDelay = 1 * 1000;  // 1 second

// We will try creating a new allocator from scratch after a delay of this
// length without becoming writable (or timing out).
static const int kAllocatePeriod = 20 * 1000;  // 20 seconds

cricket::Port::CandidateOrigin GetOrigin(cricket::Port* port,
                                         cricket::Port* origin_port) {
  if (!origin_port)
    return cricket::Port::ORIGIN_MESSAGE;
  else if (port == origin_port)
    return cricket::Port::ORIGIN_THIS_PORT;
  else
    return cricket::Port::ORIGIN_OTHER_PORT;
}

// Compares two connections based only on static information about them.
int CompareConnectionCandidates(cricket::Connection* a,
                                cricket::Connection* b) {
  // Combine local and remote preferences
  ASSERT(a->local_candidate().preference() == a->port()->preference());
  ASSERT(b->local_candidate().preference() == b->port()->preference());
  double a_pref = a->local_candidate().preference()
                * a->remote_candidate().preference();
  double b_pref = b->local_candidate().preference()
                * b->remote_candidate().preference();

  // Now check combined preferences. Lower values get sorted last.
  if (a_pref > b_pref)
    return 1;
  if (a_pref < b_pref)
    return -1;

  return 0;
}

// Compare two connections based on their writability and static preferences.
int CompareConnections(cricket::Connection *a, cricket::Connection *b) {
  // Sort based on write-state.  Better states have lower values.
  if (a->write_state() < b->write_state())
    return 1;
  if (a->write_state() > b->write_state())
    return -1;

  // Compare the candidate information.
  return CompareConnectionCandidates(a, b);
}

// Wraps the comparison connection into a less than operator that puts higher
// priority writable connections first.
class ConnectionCompare {
 public:
  bool operator()(const cricket::Connection *ca,
                  const cricket::Connection *cb) {
    cricket::Connection* a = const_cast<cricket::Connection*>(ca);
    cricket::Connection* b = const_cast<cricket::Connection*>(cb);

    // Compare first on writability and static preferences.
    int cmp = CompareConnections(a, b);
    if (cmp > 0)
      return true;
    if (cmp < 0)
      return false;

    // Otherwise, sort based on latency estimate.
    return a->rtt() < b->rtt();

    // Should we bother checking for the last connection that last received
    // data? It would help rendezvous on the connection that is also receiving
    // packets.
    //
    // TODO: Yes we should definitely do this.  The TCP protocol gains
    // efficiency by being used bidirectionally, as opposed to two separate
    // unidirectional streams.  This test should probably occur before
    // comparison of local prefs (assuming combined prefs are the same).  We
    // need to be careful though, not to bounce back and forth with both sides
    // trying to rendevous with the other.
  }
};

// Determines whether we should switch between two connections, based first on
// static preferences and then (if those are equal) on latency estimates.
bool ShouldSwitch(cricket::Connection* a_conn, cricket::Connection* b_conn) {
  if (a_conn == b_conn)
    return false;

  if (!a_conn || !b_conn)  // don't think the latter should happen
    return true;

  int prefs_cmp = CompareConnections(a_conn, b_conn);
  if (prefs_cmp < 0)
    return true;
  if (prefs_cmp > 0)
    return false;

  return b_conn->rtt() <= a_conn->rtt() + kMinImprovement;
}

}  // unnamed namespace

namespace cricket {

P2PTransportChannel::P2PTransportChannel(const std::string &name,
                                         const std::string &session_type,
                                         P2PTransport* transport,
                                         PortAllocator *allocator) :
    TransportChannelImpl(name, session_type),
    transport_(transport),
    allocator_(allocator),
    worker_thread_(talk_base::Thread::Current()),
    waiting_for_signaling_(false),
    error_(0),
    best_connection_(NULL),
    pinging_started_(false),
    sort_dirty_(false),
    was_writable_(false),
    was_timed_out_(true) {
}

P2PTransportChannel::~P2PTransportChannel() {
  ASSERT(worker_thread_ == talk_base::Thread::Current());

  for (uint32 i = 0; i < allocator_sessions_.size(); ++i)
    delete allocator_sessions_[i];
}

// Add the allocator session to our list so that we know which sessions
// are still active.
void P2PTransportChannel::AddAllocatorSession(PortAllocatorSession* session) {
  session->set_generation(static_cast<uint32>(allocator_sessions_.size()));
  allocator_sessions_.push_back(session);

  // We now only want to apply new candidates that we receive to the ports
  // created by this new session because these are replacing those of the
  // previous sessions.
  ports_.clear();

  session->SignalPortReady.connect(this, &P2PTransportChannel::OnPortReady);
  session->SignalCandidatesReady.connect(
      this, &P2PTransportChannel::OnCandidatesReady);
  session->GetInitialPorts();
  if (pinging_started_)
    session->StartGetAllPorts();
}

// Go into the state of processing candidates, and running in general
void P2PTransportChannel::Connect() {
  ASSERT(worker_thread_ == talk_base::Thread::Current());

  // Kick off an allocator session
  Allocate();

  // Start pinging as the ports come in.
  thread()->Post(this, MSG_PING);
}

// Reset the socket, clear up any previous allocations and start over
void P2PTransportChannel::Reset() {
  ASSERT(worker_thread_ == talk_base::Thread::Current());

  // Get rid of all the old allocators.  This should clean up everything.
  for (uint32 i = 0; i < allocator_sessions_.size(); ++i)
    delete allocator_sessions_[i];

  allocator_sessions_.clear();
  ports_.clear();
  connections_.clear();
  best_connection_ = NULL;

  // Forget about all of the candidates we got before.
  remote_candidates_.clear();

  // Revert to the initial state.
  set_readable(false);
  set_writable(false);

  // Reinitialize the rest of our state.
  waiting_for_signaling_ = false;
  pinging_started_ = false;
  sort_dirty_ = false;
  was_writable_ = false;
  was_timed_out_ = true;

  // If we allocated before, start a new one now.
  if (transport_->connect_requested())
    Allocate();

  // Start pinging as the ports come in.
  thread()->Clear(this);
  thread()->Post(this, MSG_PING);
}

// A new port is available, attempt to make connections for it
void P2PTransportChannel::OnPortReady(PortAllocatorSession *session,
                                      Port* port) {
  ASSERT(worker_thread_ == talk_base::Thread::Current());

  // Set in-effect options on the new port
  for (OptionMap::const_iterator it = options_.begin();
       it != options_.end();
       ++it) {
    int val = port->SetOption(it->first, it->second);
    if (val < 0) {
      LOG_J(LS_WARNING, port) << "SetOption(" << it->first
                              << ", " << it->second
                              << ") failed: " << port->GetError();
    }
  }

  // Remember the ports and candidates, and signal that candidates are ready.
  // The session will handle this, and send an initiate/accept/modify message
  // if one is pending.

  ports_.push_back(port);
  port->SignalUnknownAddress.connect(
      this, &P2PTransportChannel::OnUnknownAddress);
  port->SignalDestroyed.connect(this, &P2PTransportChannel::OnPortDestroyed);

  // Attempt to create a connection from this new port to all of the remote
  // candidates that we were given so far.

  std::vector<RemoteCandidate>::iterator iter;
  for (iter = remote_candidates_.begin(); iter != remote_candidates_.end();
       ++iter)
    CreateConnection(port, *iter, iter->origin_port(), false);

  SortConnections();
}

// A new candidate is available, let listeners know
void P2PTransportChannel::OnCandidatesReady(
    PortAllocatorSession *session, const std::vector<Candidate>& candidates) {
  for (size_t i = 0; i < candidates.size(); ++i) {
    SignalCandidateReady(this, candidates[i]);
  }
}

// Handle stun packets
void P2PTransportChannel::OnUnknownAddress(
    Port *port, const talk_base::SocketAddress &address, StunMessage *stun_msg,
    const std::string &remote_username) {
  ASSERT(worker_thread_ == talk_base::Thread::Current());

  // Port has received a valid stun packet from an address that no Connection
  // is currently available for. See if the remote user name is in the remote
  // candidate list. If it isn't return error to the stun request.

  const Candidate *candidate = NULL;
  std::vector<RemoteCandidate>::iterator it;
  for (it = remote_candidates_.begin(); it != remote_candidates_.end(); ++it) {
    if ((*it).username() == remote_username) {
      candidate = &(*it);
      break;
    }
  }
  if (candidate == NULL) {
    // Don't know about this username, the request is bogus
    // This sometimes happens if a binding response comes in before the ACCEPT
    // message.  It is totally valid; the retry state machine will try again.

    port->SendBindingErrorResponse(stun_msg, address,
        STUN_ERROR_STALE_CREDENTIALS, STUN_ERROR_REASON_STALE_CREDENTIALS);
    delete stun_msg;
    return;
  }

  // Check for connectivity to this address. Create connections
  // to this address across all local ports. First, add this as a new remote
  // address

  Candidate new_remote_candidate = *candidate;
  new_remote_candidate.set_address(address);
  // new_remote_candidate.set_protocol(port->protocol());

  // This remote username exists. Now create connections using this candidate,
  // and resort

  if (CreateConnections(new_remote_candidate, port, true)) {
    // Send the pinger a successful stun response.
    port->SendBindingResponse(stun_msg, address);

    // Update the list of connections since we just added another.  We do this
    // after sending the response since it could (in principle) delete the
    // connection in question.
    SortConnections();
  } else {
    // Hopefully this won't occur, because changing a destination address
    // shouldn't cause a new connection to fail
    ASSERT(false);
    port->SendBindingErrorResponse(stun_msg, address, STUN_ERROR_SERVER_ERROR,
        STUN_ERROR_REASON_SERVER_ERROR);
  }

  delete stun_msg;
}

void P2PTransportChannel::OnCandidate(const Candidate& candidate) {
  ASSERT(worker_thread_ == talk_base::Thread::Current());

  // Create connections to this remote candidate.
  CreateConnections(candidate, NULL, false);

  // Resort the connections list, which may have new elements.
  SortConnections();
}

// Creates connections from all of the ports that we care about to the given
// remote candidate.  The return value is true if we created a connection from
// the origin port.
bool P2PTransportChannel::CreateConnections(const Candidate &remote_candidate,
                                            Port* origin_port,
                                            bool readable) {
  ASSERT(worker_thread_ == talk_base::Thread::Current());

  // Add a new connection for this candidate to every port that allows such a
  // connection (i.e., if they have compatible protocols) and that does not
  // already have a connection to an equivalent candidate.  We must be careful
  // to make sure that the origin port is included, even if it was pruned,
  // since that may be the only port that can create this connection.

  bool created = false;

  std::vector<Port *>::reverse_iterator it;
  for (it = ports_.rbegin(); it != ports_.rend(); ++it) {
    if (CreateConnection(*it, remote_candidate, origin_port, readable)) {
      if (*it == origin_port)
        created = true;
    }
  }

  if ((origin_port != NULL) &&
      std::find(ports_.begin(), ports_.end(), origin_port) == ports_.end()) {
    if (CreateConnection(origin_port, remote_candidate, origin_port, readable))
      created = true;
  }

  // Remember this remote candidate so that we can add it to future ports.
  RememberRemoteCandidate(remote_candidate, origin_port);

  return created;
}

// Setup a connection object for the local and remote candidate combination.
// And then listen to connection object for changes.
bool P2PTransportChannel::CreateConnection(Port* port,
                                           const Candidate& remote_candidate,
                                           Port* origin_port,
                                           bool readable) {
  // Look for an existing connection with this remote address.  If one is not
  // found, then we can create a new connection for this address.
  Connection* connection = port->GetConnection(remote_candidate.address());
  if (connection != NULL) {
    // It is not legal to try to change any of the parameters of an existing
    // connection; however, the other side can send a duplicate candidate.
    if (!remote_candidate.IsEquivalent(connection->remote_candidate())) {
      LOG(INFO) << "Attempt to change a remote candidate";
      return false;
    }
  } else {
    Port::CandidateOrigin origin = GetOrigin(port, origin_port);
    connection = port->CreateConnection(remote_candidate, origin);
    if (!connection)
      return false;

    connections_.push_back(connection);
    connection->SignalReadPacket.connect(
        this, &P2PTransportChannel::OnReadPacket);
    connection->SignalStateChange.connect(
        this, &P2PTransportChannel::OnConnectionStateChange);
    connection->SignalDestroyed.connect(
        this, &P2PTransportChannel::OnConnectionDestroyed);

    LOG_J(LS_INFO, this) << "Created connection with origin=" << origin << ", ("
                         << connections_.size() << " total)";
  }

  // If we are readable, it is because we are creating this in response to a
  // ping from the other side.  This will cause the state to become readable.
  if (readable)
    connection->ReceivedPing();

  return true;
}

// Maintain our remote candidate list, adding this new remote one.
void P2PTransportChannel::RememberRemoteCandidate(
    const Candidate& remote_candidate, Port* origin_port) {
  // Remove any candidates whose generation is older than this one.  The
  // presence of a new generation indicates that the old ones are not useful.
  uint32 i = 0;
  while (i < remote_candidates_.size()) {
    if (remote_candidates_[i].generation() < remote_candidate.generation()) {
      LOG(INFO) << "Pruning candidate from old generation: "
                << remote_candidates_[i].address().ToString();
      remote_candidates_.erase(remote_candidates_.begin() + i);
    } else {
      i += 1;
    }
  }

  // Make sure this candidate is not a duplicate.
  for (uint32 i = 0; i < remote_candidates_.size(); ++i) {
    if (remote_candidates_[i].IsEquivalent(remote_candidate)) {
      LOG(INFO) << "Duplicate candidate: "
                << remote_candidate.address().ToString();
      return;
    }
  }

  // Try this candidate for all future ports.
  remote_candidates_.push_back(RemoteCandidate(remote_candidate, origin_port));

  // We have some candidates from the other side, we are now serious about
  // this connection.  Let's do the StartGetAllPorts thing.
  if (!pinging_started_) {
    pinging_started_ = true;
    for (size_t i = 0; i < allocator_sessions_.size(); ++i) {
      if (!allocator_sessions_[i]->IsGettingAllPorts())
        allocator_sessions_[i]->StartGetAllPorts();
    }
  }
}

// Send data to the other side, using our best connection
int P2PTransportChannel::SendPacket(const char *data, size_t len) {
  // This can get called on any thread that is convenient to write from!
  if (best_connection_ == NULL) {
    error_ = EWOULDBLOCK;
    return SOCKET_ERROR;
  }
  int sent = best_connection_->Send(data, len);
  if (sent <= 0) {
    ASSERT(sent < 0);
    error_ = best_connection_->GetError();
  }
  return sent;
}

// Begin allocate (or immediately re-allocate, if MSG_ALLOCATE pending)
void P2PTransportChannel::Allocate() {
  CancelPendingAllocate();
  // Time for a new allocator, lets make sure we have a signalling channel
  // to communicate candidates through first.
  waiting_for_signaling_ = true;
  SignalRequestSignaling();
}

// Cancels the pending allocate, if any.
void P2PTransportChannel::CancelPendingAllocate() {
  thread()->Clear(this, MSG_ALLOCATE);
}

// Monitor connection states
void P2PTransportChannel::UpdateConnectionStates() {
  uint32 now = talk_base::Time();

  // We need to copy the list of connections since some may delete themselves
  // when we call UpdateState.
  for (uint32 i = 0; i < connections_.size(); ++i)
    connections_[i]->UpdateState(now);
}

// Prepare for best candidate sorting
void P2PTransportChannel::RequestSort() {
  if (!sort_dirty_) {
    worker_thread_->Post(this, MSG_SORT);
    sort_dirty_ = true;
  }
}

// Sort the available connections to find the best one.  We also monitor
// the number of available connections and the current state so that we
// can possibly kick off more allocators (for more connections).
void P2PTransportChannel::SortConnections() {
  ASSERT(worker_thread_ == talk_base::Thread::Current());

  // Make sure the connection states are up-to-date since this affects how they
  // will be sorted.
  UpdateConnectionStates();

  // Any changes after this point will require a re-sort.
  sort_dirty_ = false;

  // Get a list of the networks that we are using.
  std::set<talk_base::Network*> networks;
  for (uint32 i = 0; i < connections_.size(); ++i)
    networks.insert(connections_[i]->port()->network());

  // Find the best alternative connection by sorting.  It is important to note
  // that amongst equal preference, writable connections, this will choose the
  // one whose estimated latency is lowest.  So it is the only one that we
  // need to consider switching to.

  ConnectionCompare cmp;
  std::stable_sort(connections_.begin(), connections_.end(), cmp);
  Connection* top_connection = NULL;
  if (connections_.size() > 0)
    top_connection = connections_[0];

  // If necessary, switch to the new choice.
  if (ShouldSwitch(best_connection_, top_connection))
    SwitchBestConnectionTo(top_connection);

  // We can prune any connection for which there is a writable connection on
  // the same network with better or equal prefences.  We leave those with
  // better preference just in case they become writable later (at which point,
  // we would prune out the current best connection).  We leave connections on
  // other networks because they may not be using the same resources and they
  // may represent very distinct paths over which we can switch.
  std::set<talk_base::Network*>::iterator network;
  for (network = networks.begin(); network != networks.end(); ++network) {
    Connection* primier = GetBestConnectionOnNetwork(*network);
    if (!primier || (primier->write_state() != Connection::STATE_WRITABLE))
      continue;

    for (uint32 i = 0; i < connections_.size(); ++i) {
      if ((connections_[i] != primier) &&
          (connections_[i]->port()->network() == *network) &&
          (CompareConnectionCandidates(primier, connections_[i]) >= 0)) {
        connections_[i]->Prune();
      }
    }
  }

  // Count the number of connections in the various states.

  int writable = 0;
  int write_connect = 0;
  int write_timeout = 0;

  for (uint32 i = 0; i < connections_.size(); ++i) {
    switch (connections_[i]->write_state()) {
    case Connection::STATE_WRITABLE:
      ++writable;
      break;
    case Connection::STATE_WRITE_CONNECT:
      ++write_connect;
      break;
    case Connection::STATE_WRITE_TIMEOUT:
      ++write_timeout;
      break;
    default:
      ASSERT(false);
    }
  }

  if (writable > 0) {
    HandleWritable();
  } else if (write_connect > 0) {
    HandleNotWritable();
  } else {
    HandleAllTimedOut();
  }

  // Update the state of this channel.  This method is called whenever the
  // state of any connection changes, so this is a good place to do this.
  UpdateChannelState();

  // Notify of connection state change
  SignalConnectionMonitor(this);
}

// Track the best connection, and let listeners know
void P2PTransportChannel::SwitchBestConnectionTo(Connection* conn) {
  // Note: the previous best_connection_ may be destroyed by now, so don't
  // use it.
  best_connection_ = conn;
  if (best_connection_) {
    LOG_J(LS_INFO, this) << "New best connection: " << conn->ToString();
    SignalRouteChange(this, best_connection_->remote_candidate().address());
  }
}

void P2PTransportChannel::UpdateChannelState() {
  // The Handle* functions already set the writable state.  We'll just double-
  // check it here.
  bool writable = ((best_connection_ != NULL)  &&
      (best_connection_->write_state() ==
      Connection::STATE_WRITABLE));
  ASSERT(writable == this->writable());
  if (writable != this->writable())
    LOG(LS_ERROR) << "UpdateChannelState: writable state mismatch";

  bool readable = false;
  for (uint32 i = 0; i < connections_.size(); ++i) {
    if (connections_[i]->read_state() == Connection::STATE_READABLE)
      readable = true;
  }
  set_readable(readable);
}

// We checked the status of our connections and we had at least one that
// was writable, go into the writable state.
void P2PTransportChannel::HandleWritable() {
  //
  // One or more connections writable!
  //
  if (!writable()) {
    for (uint32 i = 0; i < allocator_sessions_.size(); ++i) {
      if (allocator_sessions_[i]->IsGettingAllPorts()) {
        allocator_sessions_[i]->StopGetAllPorts();
      }
    }

    // Stop further allocations.
    CancelPendingAllocate();
  }

  // We're writable, obviously we aren't timed out
  was_writable_ = true;
  was_timed_out_ = false;
  set_writable(true);
}

// We checked the status of our connections and we didn't have any that
// were writable, go into the connecting state (kick off a new allocator
// session).
void P2PTransportChannel::HandleNotWritable() {
  //
  // No connections are writable but not timed out!
  //
  if (was_writable_) {
    // If we were writable, let's kick off an allocator session immediately
    was_writable_ = false;
    Allocate();
  }

  // We were connecting, obviously not ALL timed out.
  was_timed_out_ = false;
  set_writable(false);
}

// We checked the status of our connections and not only weren't they writable
// but they were also timed out, we really need a new allocator.
void P2PTransportChannel::HandleAllTimedOut() {
  //
  // No connections... all are timed out!
  //
  if (!was_timed_out_) {
    // We weren't timed out before, so kick off an allocator now (we'll still
    // be in the fully timed out state until the allocator actually gives back
    // new ports)
    Allocate();
  }

  // NOTE: we start was_timed_out_ in the true state so that we don't get
  // another allocator created WHILE we are in the process of building up
  // our first allocator.
  was_timed_out_ = true;
  was_writable_ = false;
  set_writable(false);
}

// If we have a best connection, return it, otherwise return top one in the
// list (later we will mark it best).
Connection* P2PTransportChannel::GetBestConnectionOnNetwork(
    talk_base::Network* network) {
  // If the best connection is on this network, then it wins.
  if (best_connection_ && (best_connection_->port()->network() == network))
    return best_connection_;

  // Otherwise, we return the top-most in sorted order.
  for (uint32 i = 0; i < connections_.size(); ++i) {
    if (connections_[i]->port()->network() == network)
      return connections_[i];
  }

  return NULL;
}

// Handle any queued up requests
void P2PTransportChannel::OnMessage(talk_base::Message *pmsg) {
  if (pmsg->message_id == MSG_SORT)
    OnSort();
  else if (pmsg->message_id == MSG_PING)
    OnPing();
  else if (pmsg->message_id == MSG_ALLOCATE)
    Allocate();
  else
    ASSERT(false);
}

// Handle queued up sort request
void P2PTransportChannel::OnSort() {
  // Resort the connections based on the new statistics.
  SortConnections();
}

// Handle queued up ping request
void P2PTransportChannel::OnPing() {
  // Make sure the states of the connections are up-to-date (since this affects
  // which ones are pingable).
  UpdateConnectionStates();

  // Find the oldest pingable connection and have it do a ping.
  Connection* conn = FindNextPingableConnection();
  if (conn)
    conn->Ping(talk_base::Time());

  // Post ourselves a message to perform the next ping.
  uint32 delay = writable() ? WRITABLE_DELAY : UNWRITABLE_DELAY;
  thread()->PostDelayed(delay, this, MSG_PING);
}

// Is the connection in a state for us to even consider pinging the other side?
bool P2PTransportChannel::IsPingable(Connection* conn) {
  // An unconnected connection cannot be written to at all, so pinging is out
  // of the question.
  if (!conn->connected())
    return false;

  if (writable()) {
    // If we are writable, then we only want to ping connections that could be
    // better than this one, i.e., the ones that were not pruned.
    return (conn->write_state() != Connection::STATE_WRITE_TIMEOUT);
  } else {
    // If we are not writable, then we need to try everything that might work.
    // This includes both connections that do not have write timeout as well as
    // ones that do not have read timeout.  A connection could be readable but
    // be in write-timeout if we pruned it before.  Since the other side is
    // still pinging it, it very well might still work.
    return (conn->write_state() != Connection::STATE_WRITE_TIMEOUT) ||
           (conn->read_state() != Connection::STATE_READ_TIMEOUT);
  }
}

// Returns the next pingable connection to ping.  This will be the oldest
// pingable connection unless we have a writable connection that is past the
// maximum acceptable ping delay.
Connection* P2PTransportChannel::FindNextPingableConnection() {
  uint32 now = talk_base::Time();
  if (best_connection_ &&
      (best_connection_->write_state() == Connection::STATE_WRITABLE) &&
      (best_connection_->last_ping_sent()
       + MAX_CURRENT_WRITABLE_DELAY <= now)) {
    return best_connection_;
  }

  Connection* oldest_conn = NULL;
  uint32 oldest_time = 0xFFFFFFFF;
  for (uint32 i = 0; i < connections_.size(); ++i) {
    if (IsPingable(connections_[i])) {
      if (connections_[i]->last_ping_sent() < oldest_time) {
        oldest_time = connections_[i]->last_ping_sent();
        oldest_conn = connections_[i];
      }
    }
  }
  return oldest_conn;
}

// return the number of "pingable" connections
uint32 P2PTransportChannel::NumPingableConnections() {
  uint32 count = 0;
  for (uint32 i = 0; i < connections_.size(); ++i) {
    if (IsPingable(connections_[i]))
      count += 1;
  }
  return count;
}

// When a connection's state changes, we need to figure out who to use as
// the best connection again.  It could have become usable, or become unusable.
void P2PTransportChannel::OnConnectionStateChange(Connection *connection) {
  ASSERT(worker_thread_ == talk_base::Thread::Current());

  // We have to unroll the stack before doing this because we may be changing
  // the state of connections while sorting.
  RequestSort();
}

// When a connection is removed, edit it out, and then update our best
// connection.
void P2PTransportChannel::OnConnectionDestroyed(Connection *connection) {
  ASSERT(worker_thread_ == talk_base::Thread::Current());

  // Note: the previous best_connection_ may be destroyed by now, so don't
  // use it.

  // Remove this connection from the list.
  std::vector<Connection*>::iterator iter =
      std::find(connections_.begin(), connections_.end(), connection);
  ASSERT(iter != connections_.end());
  connections_.erase(iter);

  LOG_J(LS_INFO, this) << "Removed connection ("
    << static_cast<int>(connections_.size()) << " remaining)";

  // If this is currently the best connection, then we need to pick a new one.
  // The call to SortConnections will pick a new one.  It looks at the current
  // best connection in order to avoid switching between fairly similar ones.
  // Since this connection is no longer an option, we can just set best to NULL
  // and re-choose a best assuming that there was no best connection.
  if (best_connection_ == connection) {
    SwitchBestConnectionTo(NULL);
    RequestSort();
  }
}

// When a port is destroyed remove it from our list of ports to use for
// connection attempts.
void P2PTransportChannel::OnPortDestroyed(Port* port) {
  ASSERT(worker_thread_ == talk_base::Thread::Current());

  // Remove this port from the list (if we didn't drop it already).
  std::vector<Port*>::iterator iter =
      std::find(ports_.begin(), ports_.end(), port);
  if (iter != ports_.end())
    ports_.erase(iter);

  LOG(INFO) << "Removed port from p2p socket: "
            << static_cast<int>(ports_.size()) << " remaining";
}

// We data is available, let listeners know
void P2PTransportChannel::OnReadPacket(Connection *connection,
                                       const char *data, size_t len) {
  ASSERT(worker_thread_ == talk_base::Thread::Current());

  // Let the client know of an incoming packet

  SignalReadPacket(this, data, len);
}

// Set options on ourselves is simply setting options on all of our available
// port objects.
int P2PTransportChannel::SetOption(talk_base::Socket::Option opt, int value) {
  OptionMap::iterator it = options_.find(opt);
  if (it == options_.end()) {
    options_.insert(std::make_pair(opt, value));
  } else if (it->second == value) {
    return 0;
  } else {
    it->second = value;
  }

  for (uint32 i = 0; i < ports_.size(); ++i) {
    int val = ports_[i]->SetOption(opt, value);
    if (val < 0) {
      // Because this also occurs deferred, probably no point in reporting an
      // error
      LOG(WARNING) << "SetOption(" << opt << ", " << value << ") failed: "
                   << ports_[i]->GetError();
    }
  }
  return 0;
}

// When the signalling channel is ready, we can really kick off the allocator
void P2PTransportChannel::OnSignalingReady() {
  if (waiting_for_signaling_) {
    waiting_for_signaling_ = false;
    AddAllocatorSession(allocator_->CreateSession(name(), session_type()));
    thread()->PostDelayed(kAllocatePeriod, this, MSG_ALLOCATE);
  }
}

}  // namespace cricket