aboutsummaryrefslogtreecommitdiffstats
path: root/src/effects/SkGradientShader.cpp
diff options
context:
space:
mode:
authorThe Android Open Source Project <initial-contribution@android.com>2009-01-09 17:51:21 -0800
committerThe Android Open Source Project <initial-contribution@android.com>2009-01-09 17:51:21 -0800
commit03202c9c3dfbf8c4feb0a1ee9b3680817e633f58 (patch)
tree1d0ba7cbf3e77c239527697ac455312b216c434e /src/effects/SkGradientShader.cpp
parent37df15a82319228ae28fe5d99c010b288aad7091 (diff)
downloadexternal_skia-03202c9c3dfbf8c4feb0a1ee9b3680817e633f58.zip
external_skia-03202c9c3dfbf8c4feb0a1ee9b3680817e633f58.tar.gz
external_skia-03202c9c3dfbf8c4feb0a1ee9b3680817e633f58.tar.bz2
auto import from //branches/cupcake/...@125939
Diffstat (limited to 'src/effects/SkGradientShader.cpp')
-rw-r--r--src/effects/SkGradientShader.cpp1562
1 files changed, 1562 insertions, 0 deletions
diff --git a/src/effects/SkGradientShader.cpp b/src/effects/SkGradientShader.cpp
new file mode 100644
index 0000000..a1674cb
--- /dev/null
+++ b/src/effects/SkGradientShader.cpp
@@ -0,0 +1,1562 @@
+/* libs/graphics/effects/SkGradientShader.cpp
+**
+** Copyright 2006, The Android Open Source Project
+**
+** Licensed under the Apache License, Version 2.0 (the "License");
+** you may not use this file except in compliance with the License.
+** You may obtain a copy of the License at
+**
+** http://www.apache.org/licenses/LICENSE-2.0
+**
+** Unless required by applicable law or agreed to in writing, software
+** distributed under the License is distributed on an "AS IS" BASIS,
+** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+** See the License for the specific language governing permissions and
+** limitations under the License.
+*/
+
+#include "SkGradientShader.h"
+#include "SkColorPriv.h"
+#include "SkUnitMapper.h"
+#include "SkUtils.h"
+
+/*
+ ToDo
+
+ - not sure we still need the full Rec struct, now that we're using a cache
+ - detect const-alpha (but not opaque) in getFlags()
+*/
+
+/* dither seems to look better, but not stuningly yet, and it slows us down a little
+ so its not on by default yet.
+*/
+#define TEST_GRADIENT_DITHER
+
+///////////////////////////////////////////////////////////////////////////
+
+typedef SkFixed (*TileProc)(SkFixed);
+
+static SkFixed clamp_tileproc(SkFixed x)
+{
+ return SkClampMax(x, 0xFFFF);
+}
+
+static SkFixed repeat_tileproc(SkFixed x)
+{
+ return x & 0xFFFF;
+}
+
+static inline SkFixed mirror_tileproc(SkFixed x)
+{
+ int s = x << 15 >> 31;
+ return (x ^ s) & 0xFFFF;
+}
+
+static const TileProc gTileProcs[] = {
+ clamp_tileproc,
+ repeat_tileproc,
+ mirror_tileproc
+};
+
+//////////////////////////////////////////////////////////////////////////////
+
+static inline int repeat_6bits(int x)
+{
+ return x & 63;
+}
+
+static inline int mirror_6bits(int x)
+{
+#ifdef SK_CPU_HAS_CONDITIONAL_INSTR
+ if (x & 64)
+ x = ~x;
+ return x & 63;
+#else
+ int s = x << 25 >> 31;
+ return (x ^ s) & 63;
+#endif
+}
+
+static inline int repeat_8bits(int x)
+{
+ return x & 0xFF;
+}
+
+static inline int mirror_8bits(int x)
+{
+#ifdef SK_CPU_HAS_CONDITIONAL_INSTR
+ if (x & 256)
+ x = ~x;
+ return x & 255;
+#else
+ int s = x << 23 >> 31;
+ return (x ^ s) & 0xFF;
+#endif
+}
+
+//////////////////////////////////////////////////////////////////////////////
+
+class Gradient_Shader : public SkShader {
+public:
+ Gradient_Shader(const SkColor colors[], const SkScalar pos[],
+ int colorCount, SkShader::TileMode mode, SkUnitMapper* mapper);
+ virtual ~Gradient_Shader();
+
+ // overrides
+ virtual bool setContext(const SkBitmap&, const SkPaint&, const SkMatrix&);
+ virtual uint32_t getFlags() { return fFlags; }
+
+protected:
+ Gradient_Shader(SkFlattenableReadBuffer& );
+ SkUnitMapper* fMapper;
+ SkMatrix fPtsToUnit; // set by subclass
+ SkMatrix fDstToIndex;
+ SkMatrix::MapXYProc fDstToIndexProc;
+ SkPMColor* fARGB32;
+ TileMode fTileMode;
+ TileProc fTileProc;
+ uint16_t fColorCount;
+ uint8_t fDstToIndexClass;
+ uint8_t fFlags;
+
+ struct Rec {
+ SkFixed fPos; // 0...1
+ uint32_t fScale; // (1 << 24) / range
+ };
+ Rec* fRecs;
+
+ enum {
+ kCache16Bits = 6, // seems like enough for visual accuracy
+ kCache16Count = 1 << kCache16Bits,
+ kCache32Bits = 8, // pretty much should always be 8
+ kCache32Count = 1 << kCache32Bits
+ };
+ virtual void flatten(SkFlattenableWriteBuffer& );
+ const uint16_t* getCache16();
+ const SkPMColor* getCache32();
+
+private:
+ enum {
+ kColorStorageCount = 4, // more than this many colors, and we'll use sk_malloc for the space
+
+ kStorageSize = kColorStorageCount * (sizeof(SkColor) + sizeof(SkPMColor) + sizeof(Rec))
+ };
+ SkColor fStorage[(kStorageSize + 3) >> 2];
+ SkColor* fOrigColors;
+
+ uint16_t* fCache16; // working ptr. If this is NULL, we need to recompute the cache values
+ SkPMColor* fCache32; // working ptr. If this is NULL, we need to recompute the cache values
+
+ uint16_t* fCache16Storage; // storage for fCache16, allocated on demand
+ SkPMColor* fCache32Storage; // storage for fCache32, allocated on demand
+ unsigned fCacheAlpha; // the alpha value we used when we computed the cache. larger than 8bits so we can store uninitialized value
+
+ typedef SkShader INHERITED;
+};
+
+static inline unsigned scalarToU16(SkScalar x)
+{
+ SkASSERT(x >= 0 && x <= SK_Scalar1);
+
+#ifdef SK_SCALAR_IS_FLOAT
+ return (unsigned)(x * 0xFFFF);
+#else
+ return x - (x >> 16); // probably should be x - (x > 0x7FFF) but that is slower
+#endif
+}
+
+Gradient_Shader::Gradient_Shader(const SkColor colors[], const SkScalar pos[], int colorCount,
+ SkShader::TileMode mode, SkUnitMapper* mapper)
+{
+ SkASSERT(colorCount > 1);
+
+ fCacheAlpha = 256; // init to a value that paint.getAlpha() can't return
+
+ fMapper = mapper;
+ mapper->safeRef();
+
+ fCache16 = fCache16Storage = NULL;
+ fCache32 = fCache32Storage = NULL;
+
+ fColorCount = SkToU16(colorCount);
+ if (colorCount > kColorStorageCount)
+ fOrigColors = (SkColor*)sk_malloc_throw((sizeof(SkColor) + sizeof(SkPMColor) + sizeof(Rec)) * colorCount);
+ else
+ fOrigColors = fStorage;
+ memcpy(fOrigColors, colors, colorCount * sizeof(SkColor));
+ // our premul colors point to the 2nd half of the array
+ // these are assigned each time in setContext
+ fARGB32 = fOrigColors + colorCount;
+
+ SkASSERT((unsigned)mode < SkShader::kTileModeCount);
+ SkASSERT(SkShader::kTileModeCount == SK_ARRAY_COUNT(gTileProcs));
+ fTileMode = mode;
+ fTileProc = gTileProcs[mode];
+
+ fRecs = (Rec*)(fARGB32 + colorCount);
+ if (colorCount > 2)
+ {
+ Rec* recs = fRecs;
+
+ recs[0].fPos = 0;
+ // recs[0].fScale = 0; // unused;
+ if (pos)
+ {
+ /* We need to convert the user's array of relative positions into
+ fixed-point positions and scale factors. We need these results
+ to be strictly monotonic (no two values equal or out of order).
+ Hence this complex loop that just jams a zero for the scale
+ value if it sees a segment out of order, and it assures that
+ we start at 0 and end at 1.0
+ */
+ SkFixed prev = 0;
+ for (int i = 1; i < colorCount; i++)
+ {
+ // force the last value to be 1.0
+ SkFixed curr;
+ if (i == colorCount - 1)
+ curr = SK_Fixed1;
+ else
+ {
+ curr = SkScalarToFixed(pos[i]);
+ // pin curr withing range
+ if (curr < 0)
+ curr = 0;
+ else if (curr > SK_Fixed1)
+ curr = SK_Fixed1;
+ }
+ recs[i].fPos = curr;
+ if (curr > prev)
+ recs[i].fScale = (1 << 24) / (curr - prev);
+ else
+ recs[i].fScale = 0; // ignore this segment
+ // get ready for the next value
+ prev = curr;
+ }
+ }
+ else // assume even distribution
+ {
+ SkFixed dp = SK_Fixed1 / (colorCount - 1);
+ SkFixed p = dp;
+ SkFixed scale = (colorCount - 1) << 8; // (1 << 24) / dp
+ for (int i = 1; i < colorCount; i++)
+ {
+ recs[i].fPos = p;
+ recs[i].fScale = scale;
+ p += dp;
+ }
+ }
+ }
+}
+
+Gradient_Shader::Gradient_Shader(SkFlattenableReadBuffer& buffer) :
+ INHERITED(buffer)
+{
+ fCacheAlpha = 256;
+
+ fMapper = static_cast<SkUnitMapper*>(buffer.readFlattenable());
+
+ fCache16 = fCache16Storage = NULL;
+ fCache32 = fCache32Storage = NULL;
+
+ int colorCount = fColorCount = buffer.readU16();
+ if (colorCount > kColorStorageCount)
+ fOrigColors = (SkColor*)sk_malloc_throw((sizeof(SkColor) + sizeof(SkPMColor) + sizeof(Rec)) * colorCount);
+ else
+ fOrigColors = fStorage;
+ buffer.read(fOrigColors, colorCount * sizeof(SkColor));
+ fARGB32 = fOrigColors + colorCount;
+
+ fTileMode = (TileMode)buffer.readU8();
+ fTileProc = gTileProcs[fTileMode];
+ fRecs = (Rec*)(fARGB32 + colorCount);
+ if (colorCount > 2) {
+ Rec* recs = fRecs;
+ recs[0].fPos = 0;
+ for (int i = 1; i < colorCount; i++) {
+ recs[i].fPos = buffer.readS32();
+ recs[i].fScale = buffer.readU32();
+ }
+ }
+ buffer.read(&fPtsToUnit, sizeof(SkMatrix));
+}
+
+Gradient_Shader::~Gradient_Shader()
+{
+ if (fCache16Storage)
+ sk_free(fCache16Storage);
+ if (fCache32Storage)
+ sk_free(fCache32Storage);
+ if (fOrigColors != fStorage)
+ sk_free(fOrigColors);
+ fMapper->safeUnref();
+}
+
+void Gradient_Shader::flatten(SkFlattenableWriteBuffer& buffer)
+{
+ this->INHERITED::flatten(buffer);
+ buffer.writeFlattenable(fMapper);
+ buffer.write16(fColorCount);
+ buffer.writeMul4(fOrigColors, fColorCount * sizeof(SkColor));
+ buffer.write8(fTileMode);
+ if (fColorCount > 2) {
+ Rec* recs = fRecs;
+ for (int i = 1; i < fColorCount; i++) {
+ buffer.write32(recs[i].fPos);
+ buffer.write32(recs[i].fScale);
+ }
+ }
+ buffer.writeMul4(&fPtsToUnit, sizeof(SkMatrix));
+}
+
+bool Gradient_Shader::setContext(const SkBitmap& device,
+ const SkPaint& paint,
+ const SkMatrix& matrix)
+{
+ if (!this->INHERITED::setContext(device, paint, matrix))
+ return false;
+
+ const SkMatrix& inverse = this->getTotalInverse();
+
+ if (!fDstToIndex.setConcat(fPtsToUnit, inverse)) {
+ return false;
+ }
+
+ fDstToIndexProc = fDstToIndex.getMapXYProc();
+ fDstToIndexClass = (uint8_t)SkShader::ComputeMatrixClass(fDstToIndex);
+
+ // now convert our colors in to PMColors
+ unsigned paintAlpha = this->getPaintAlpha();
+ unsigned colorAlpha = 0xFF;
+
+ for (unsigned i = 0; i < fColorCount; i++) {
+ SkColor src = fOrigColors[i];
+ unsigned sa = SkColorGetA(src);
+ colorAlpha &= sa;
+
+ // now modulate it by the paint for our resulting ARGB32 array
+ sa = SkMulDiv255Round(sa, paintAlpha);
+ fARGB32[i] = SkPreMultiplyARGB(sa, SkColorGetR(src), SkColorGetG(src),
+ SkColorGetB(src));
+ }
+
+ fFlags = this->INHERITED::getFlags();
+ if ((colorAlpha & paintAlpha) == 0xFF) {
+ fFlags |= kOpaqueAlpha_Flag;
+ }
+ // we can do span16 as long as our individual colors are opaque,
+ // regardless of the paint's alpha
+ if (0xFF == colorAlpha) {
+ fFlags |= kHasSpan16_Flag;
+ }
+
+ // if the new alpha differs from the previous time we were called, inval our cache
+ // this will trigger the cache to be rebuilt.
+ // we don't care about the first time, since the cache ptrs will already be NULL
+ if (fCacheAlpha != paintAlpha) {
+ fCache16 = NULL; // inval the cache
+ fCache32 = NULL; // inval the cache
+ fCacheAlpha = paintAlpha; // record the new alpha
+ }
+ return true;
+}
+
+static inline int blend8(int a, int b, int scale)
+{
+ SkASSERT(a == SkToU8(a));
+ SkASSERT(b == SkToU8(b));
+ SkASSERT(scale >= 0 && scale <= 256);
+
+ return a + ((b - a) * scale >> 8);
+}
+
+static inline uint32_t dot8_blend_packed32(uint32_t s0, uint32_t s1, int blend)
+{
+#if 0
+ int a = blend8(SkGetPackedA32(s0), SkGetPackedA32(s1), blend);
+ int r = blend8(SkGetPackedR32(s0), SkGetPackedR32(s1), blend);
+ int g = blend8(SkGetPackedG32(s0), SkGetPackedG32(s1), blend);
+ int b = blend8(SkGetPackedB32(s0), SkGetPackedB32(s1), blend);
+
+ return SkPackARGB32(a, r, g, b);
+#else
+ int otherBlend = 256 - blend;
+
+#if 0
+ U32 t0 = (((s0 & 0xFF00FF) * blend + (s1 & 0xFF00FF) * otherBlend) >> 8) & 0xFF00FF;
+ U32 t1 = (((s0 >> 8) & 0xFF00FF) * blend + ((s1 >> 8) & 0xFF00FF) * otherBlend) & 0xFF00FF00;
+ SkASSERT((t0 & t1) == 0);
+ return t0 | t1;
+#else
+ return ((((s0 & 0xFF00FF) * blend + (s1 & 0xFF00FF) * otherBlend) >> 8) & 0xFF00FF) |
+ ((((s0 >> 8) & 0xFF00FF) * blend + ((s1 >> 8) & 0xFF00FF) * otherBlend) & 0xFF00FF00);
+#endif
+
+#endif
+}
+
+#define Fixed_To_Dot8(x) (((x) + 0x80) >> 8)
+
+/** We take the original colors, not our premultiplied PMColors, since we can build a 16bit table
+ as long as the original colors are opaque, even if the paint specifies a non-opaque alpha.
+*/
+static void build_16bit_cache(uint16_t cache[], SkColor c0, SkColor c1, int count)
+{
+ SkASSERT(count > 1);
+ SkASSERT(SkColorGetA(c0) == 0xFF);
+ SkASSERT(SkColorGetA(c1) == 0xFF);
+
+ SkFixed r = SkColorGetR(c0);
+ SkFixed g = SkColorGetG(c0);
+ SkFixed b = SkColorGetB(c0);
+
+ SkFixed dr = SkIntToFixed(SkColorGetR(c1) - r) / (count - 1);
+ SkFixed dg = SkIntToFixed(SkColorGetG(c1) - g) / (count - 1);
+ SkFixed db = SkIntToFixed(SkColorGetB(c1) - b) / (count - 1);
+
+ r = SkIntToFixed(r) + 0x8000;
+ g = SkIntToFixed(g) + 0x8000;
+ b = SkIntToFixed(b) + 0x8000;
+
+ do {
+ unsigned rr = r >> 16;
+ unsigned gg = g >> 16;
+ unsigned bb = b >> 16;
+ cache[0] = SkPackRGB16(SkR32ToR16(rr), SkG32ToG16(gg), SkB32ToB16(bb));
+ cache[64] = SkDitherPack888ToRGB16(rr, gg, bb);
+ cache += 1;
+ r += dr;
+ g += dg;
+ b += db;
+ } while (--count != 0);
+}
+
+static void build_32bit_cache(SkPMColor cache[], SkPMColor c0, SkPMColor c1, int count)
+{
+ SkASSERT(count > 1);
+
+ SkFixed a = SkGetPackedA32(c0);
+ SkFixed r = SkGetPackedR32(c0);
+ SkFixed g = SkGetPackedG32(c0);
+ SkFixed b = SkGetPackedB32(c0);
+
+ SkFixed da = SkIntToFixed(SkGetPackedA32(c1) - a) / (count - 1);
+ SkFixed dr = SkIntToFixed(SkGetPackedR32(c1) - r) / (count - 1);
+ SkFixed dg = SkIntToFixed(SkGetPackedG32(c1) - g) / (count - 1);
+ SkFixed db = SkIntToFixed(SkGetPackedB32(c1) - b) / (count - 1);
+
+ a = SkIntToFixed(a) + 0x8000;
+ r = SkIntToFixed(r) + 0x8000;
+ g = SkIntToFixed(g) + 0x8000;
+ b = SkIntToFixed(b) + 0x8000;
+
+ do {
+ *cache++ = SkPackARGB32(a >> 16, r >> 16, g >> 16, b >> 16);
+ a += da;
+ r += dr;
+ g += dg;
+ b += db;
+ } while (--count != 0);
+}
+
+static inline int SkFixedToFFFF(SkFixed x)
+{
+ SkASSERT((unsigned)x <= SK_Fixed1);
+ return x - (x >> 16);
+}
+
+static inline U16CPU dot6to16(unsigned x)
+{
+ SkASSERT(x < 64);
+ return (x << 10) | (x << 4) | (x >> 2);
+}
+
+const uint16_t* Gradient_Shader::getCache16()
+{
+ if (fCache16 == NULL)
+ {
+ if (fCache16Storage == NULL) // set the storage and our working ptr
+#ifdef TEST_GRADIENT_DITHER
+ fCache16Storage = (uint16_t*)sk_malloc_throw(sizeof(uint16_t) * kCache16Count * 2);
+#else
+ fCache16Storage = (uint16_t*)sk_malloc_throw(sizeof(uint16_t) * kCache16Count);
+#endif
+ fCache16 = fCache16Storage;
+ if (fColorCount == 2)
+ build_16bit_cache(fCache16, fOrigColors[0], fOrigColors[1], kCache16Count);
+ else
+ {
+ Rec* rec = fRecs;
+ int prevIndex = 0;
+ for (unsigned i = 1; i < fColorCount; i++)
+ {
+ int nextIndex = SkFixedToFFFF(rec[i].fPos) >> (16 - kCache16Bits);
+ SkASSERT(nextIndex < kCache16Count);
+
+ if (nextIndex > prevIndex)
+ build_16bit_cache(fCache16 + prevIndex, fOrigColors[i-1], fOrigColors[i], nextIndex - prevIndex + 1);
+ prevIndex = nextIndex;
+ }
+ SkASSERT(prevIndex == kCache16Count - 1);
+ }
+
+ if (fMapper)
+ {
+#ifdef TEST_GRADIENT_DITHER
+ fCache16Storage = (uint16_t*)sk_malloc_throw(sizeof(uint16_t) * kCache16Count * 2);
+#else
+ fCache16Storage = (uint16_t*)sk_malloc_throw(sizeof(uint16_t) * kCache16Count);
+#endif
+ uint16_t* linear = fCache16; // just computed linear data
+ uint16_t* mapped = fCache16Storage; // storage for mapped data
+ SkUnitMapper* map = fMapper;
+ for (int i = 0; i < 64; i++)
+ {
+ int index = map->mapUnit16(dot6to16(i)) >> 10;
+ mapped[i] = linear[index];
+#ifdef TEST_GRADIENT_DITHER
+ mapped[i + 64] = linear[index + 64];
+#endif
+ }
+ sk_free(fCache16);
+ fCache16 = fCache16Storage;
+ }
+ }
+ return fCache16;
+}
+
+const SkPMColor* Gradient_Shader::getCache32()
+{
+ if (fCache32 == NULL)
+ {
+ if (fCache32Storage == NULL) // set the storage and our working ptr
+ fCache32Storage = (SkPMColor*)sk_malloc_throw(sizeof(SkPMColor) * kCache32Count);
+
+ fCache32 = fCache32Storage;
+ if (fColorCount == 2)
+ build_32bit_cache(fCache32, fARGB32[0], fARGB32[1], kCache32Count);
+ else
+ {
+ Rec* rec = fRecs;
+ int prevIndex = 0;
+ for (unsigned i = 1; i < fColorCount; i++)
+ {
+ int nextIndex = SkFixedToFFFF(rec[i].fPos) >> (16 - kCache32Bits);
+ SkASSERT(nextIndex < kCache32Count);
+
+ if (nextIndex > prevIndex)
+ build_32bit_cache(fCache32 + prevIndex, fARGB32[i-1], fARGB32[i], nextIndex - prevIndex + 1);
+ prevIndex = nextIndex;
+ }
+ SkASSERT(prevIndex == kCache32Count - 1);
+ }
+
+ if (fMapper)
+ {
+ fCache32Storage = (SkPMColor*)sk_malloc_throw(sizeof(SkPMColor) * kCache32Count);
+ SkPMColor* linear = fCache32; // just computed linear data
+ SkPMColor* mapped = fCache32Storage; // storage for mapped data
+ SkUnitMapper* map = fMapper;
+ for (int i = 0; i < 256; i++)
+ mapped[i] = linear[map->mapUnit16((i << 8) | i) >> 8];
+ sk_free(fCache32);
+ fCache32 = fCache32Storage;
+ }
+ }
+ return fCache32;
+}
+
+///////////////////////////////////////////////////////////////////////////
+
+static void pts_to_unit_matrix(const SkPoint pts[2], SkMatrix* matrix)
+{
+ SkVector vec = pts[1] - pts[0];
+ SkScalar mag = vec.length();
+ SkScalar inv = mag ? SkScalarInvert(mag) : 0;
+
+ vec.scale(inv);
+ matrix->setSinCos(-vec.fY, vec.fX, pts[0].fX, pts[0].fY);
+ matrix->postTranslate(-pts[0].fX, -pts[0].fY);
+ matrix->postScale(inv, inv);
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+class Linear_Gradient : public Gradient_Shader {
+public:
+ Linear_Gradient(const SkPoint pts[2],
+ const SkColor colors[], const SkScalar pos[], int colorCount,
+ SkShader::TileMode mode, SkUnitMapper* mapper)
+ : Gradient_Shader(colors, pos, colorCount, mode, mapper)
+ {
+ pts_to_unit_matrix(pts, &fPtsToUnit);
+ }
+ virtual void shadeSpan(int x, int y, SkPMColor dstC[], int count);
+ virtual void shadeSpan16(int x, int y, uint16_t dstC[], int count);
+ virtual bool asABitmap(SkBitmap*, SkMatrix*, TileMode*);
+
+ static SkFlattenable* CreateProc(SkFlattenableReadBuffer& buffer) {
+ return SkNEW_ARGS(Linear_Gradient, (buffer));
+ }
+
+protected:
+ Linear_Gradient(SkFlattenableReadBuffer& buffer) : Gradient_Shader(buffer) {};
+ virtual Factory getFactory() { return CreateProc; }
+
+private:
+ typedef Gradient_Shader INHERITED;
+};
+
+// Return true if fx, fx+dx, fx+2*dx, ... is always in range
+static bool no_need_for_clamp(int fx, int dx, int count)
+{
+ SkASSERT(count > 0);
+ return (unsigned)((fx | (fx + (count - 1) * dx)) >> 8) <= 0xFF;
+}
+
+void Linear_Gradient::shadeSpan(int x, int y, SkPMColor dstC[], int count)
+{
+ SkASSERT(count > 0);
+
+ SkPoint srcPt;
+ SkMatrix::MapXYProc dstProc = fDstToIndexProc;
+ TileProc proc = fTileProc;
+ const SkPMColor* cache = this->getCache32();
+
+ if (fDstToIndexClass != kPerspective_MatrixClass)
+ {
+ dstProc(fDstToIndex, SkIntToScalar(x), SkIntToScalar(y), &srcPt);
+ SkFixed dx, fx = SkScalarToFixed(srcPt.fX);
+
+ if (fDstToIndexClass == kFixedStepInX_MatrixClass)
+ {
+ SkFixed dxStorage[1];
+ (void)fDstToIndex.fixedStepInX(SkIntToScalar(y), dxStorage, NULL);
+ dx = dxStorage[0];
+ }
+ else
+ {
+ SkASSERT(fDstToIndexClass == kLinear_MatrixClass);
+ dx = SkScalarToFixed(fDstToIndex.getScaleX());
+ }
+
+ if (SkFixedNearlyZero(dx)) // we're a vertical gradient, so no change in a span
+ {
+ unsigned fi = proc(fx);
+ SkASSERT(fi <= 0xFFFF);
+ sk_memset32(dstC, cache[fi >> (16 - kCache32Bits)], count);
+ }
+ else if (proc == clamp_tileproc)
+ {
+#if 0
+ if (no_need_for_clamp(fx, dx, count))
+ {
+ unsigned fi;
+ while ((count -= 4) >= 0)
+ {
+ fi = fx >> 8; SkASSERT(fi <= 0xFF); fx += dx; *dstC++ = cache[fi];
+ fi = fx >> 8; SkASSERT(fi <= 0xFF); fx += dx; *dstC++ = cache[fi];
+ fi = fx >> 8; SkASSERT(fi <= 0xFF); fx += dx; *dstC++ = cache[fi];
+ fi = fx >> 8; SkASSERT(fi <= 0xFF); fx += dx; *dstC++ = cache[fi];
+ }
+ SkASSERT(count <= -1 && count >= -4);
+ count += 4;
+ while (--count >= 0)
+ {
+ fi = fx >> 8;
+ SkASSERT(fi <= 0xFF);
+ fx += dx;
+ *dstC++ = cache[fi];
+ }
+ }
+ else
+#endif
+ do {
+ unsigned fi = SkClampMax(fx >> 8, 0xFF);
+ SkASSERT(fi <= 0xFF);
+ fx += dx;
+ *dstC++ = cache[fi];
+ } while (--count != 0);
+ }
+ else if (proc == mirror_tileproc)
+ {
+ do {
+ unsigned fi = mirror_8bits(fx >> 8);
+ SkASSERT(fi <= 0xFF);
+ fx += dx;
+ *dstC++ = cache[fi];
+ } while (--count != 0);
+ }
+ else
+ {
+ SkASSERT(proc == repeat_tileproc);
+ do {
+ unsigned fi = repeat_8bits(fx >> 8);
+ SkASSERT(fi <= 0xFF);
+ fx += dx;
+ *dstC++ = cache[fi];
+ } while (--count != 0);
+ }
+ }
+ else
+ {
+ SkScalar dstX = SkIntToScalar(x);
+ SkScalar dstY = SkIntToScalar(y);
+ do {
+ dstProc(fDstToIndex, dstX, dstY, &srcPt);
+ unsigned fi = proc(SkScalarToFixed(srcPt.fX));
+ SkASSERT(fi <= 0xFFFF);
+ *dstC++ = cache[fi >> (16 - kCache32Bits)];
+ dstX += SK_Scalar1;
+ } while (--count != 0);
+ }
+}
+
+bool Linear_Gradient::asABitmap(SkBitmap* bitmap, SkMatrix* matrix,
+ TileMode xy[]) {
+ if (bitmap) {
+ bitmap->setConfig(SkBitmap::kARGB_8888_Config, kCache32Count, 1);
+ bitmap->allocPixels(); // share with shader???
+ memcpy(bitmap->getPixels(), this->getCache32(), kCache32Count * 4);
+ }
+ if (matrix) {
+ matrix->setScale(SkIntToScalar(kCache32Count), SK_Scalar1);
+ matrix->preConcat(fPtsToUnit);
+ }
+ if (xy) {
+ xy[0] = fTileMode;
+ xy[1] = kClamp_TileMode;
+ }
+ return true;
+}
+
+#ifdef TEST_GRADIENT_DITHER
+static void dither_memset16(uint16_t dst[], uint16_t value, uint16_t other, int count)
+{
+ if ((unsigned)dst & 2)
+ {
+ *dst++ = value;
+ count -= 1;
+ SkTSwap(value, other);
+ }
+
+ sk_memset32((uint32_t*)dst, (value << 16) | other, count >> 1);
+
+ if (count & 1)
+ dst[count - 1] = value;
+}
+#endif
+
+void Linear_Gradient::shadeSpan16(int x, int y, uint16_t dstC[], int count)
+{
+ SkASSERT(count > 0);
+
+ SkPoint srcPt;
+ SkMatrix::MapXYProc dstProc = fDstToIndexProc;
+ TileProc proc = fTileProc;
+ const uint16_t* cache = this->getCache16();
+#ifdef TEST_GRADIENT_DITHER
+ int toggle = ((x ^ y) & 1) << kCache16Bits;
+#endif
+
+ if (fDstToIndexClass != kPerspective_MatrixClass)
+ {
+ dstProc(fDstToIndex, SkIntToScalar(x), SkIntToScalar(y), &srcPt);
+ SkFixed dx, fx = SkScalarToFixed(srcPt.fX);
+
+ if (fDstToIndexClass == kFixedStepInX_MatrixClass)
+ {
+ SkFixed dxStorage[1];
+ (void)fDstToIndex.fixedStepInX(SkIntToScalar(y), dxStorage, NULL);
+ dx = dxStorage[0];
+ }
+ else
+ {
+ SkASSERT(fDstToIndexClass == kLinear_MatrixClass);
+ dx = SkScalarToFixed(fDstToIndex.getScaleX());
+ }
+
+ if (SkFixedNearlyZero(dx)) // we're a vertical gradient, so no change in a span
+ {
+ unsigned fi = proc(fx) >> 10;
+ SkASSERT(fi <= 63);
+#ifdef TEST_GRADIENT_DITHER
+ dither_memset16(dstC, cache[toggle + fi], cache[(toggle ^ (1 << kCache16Bits)) + fi], count);
+#else
+ sk_memset16(dstC, cache[fi], count);
+#endif
+ }
+ else if (proc == clamp_tileproc)
+ {
+ do {
+ unsigned fi = SkClampMax(fx >> 10, 63);
+ SkASSERT(fi <= 63);
+ fx += dx;
+#ifdef TEST_GRADIENT_DITHER
+ *dstC++ = cache[toggle + fi];
+ toggle ^= (1 << kCache16Bits);
+#else
+ *dstC++ = cache[fi];
+#endif
+ } while (--count != 0);
+ }
+ else if (proc == mirror_tileproc)
+ {
+ do {
+ unsigned fi = mirror_6bits(fx >> 10);
+ SkASSERT(fi <= 0x3F);
+ fx += dx;
+#ifdef TEST_GRADIENT_DITHER
+ *dstC++ = cache[toggle + fi];
+ toggle ^= (1 << kCache16Bits);
+#else
+ *dstC++ = cache[fi];
+#endif
+ } while (--count != 0);
+ }
+ else
+ {
+ SkASSERT(proc == repeat_tileproc);
+ do {
+ unsigned fi = repeat_6bits(fx >> 10);
+ SkASSERT(fi <= 0x3F);
+ fx += dx;
+#ifdef TEST_GRADIENT_DITHER
+ *dstC++ = cache[toggle + fi];
+ toggle ^= (1 << kCache16Bits);
+#else
+ *dstC++ = cache[fi];
+#endif
+ } while (--count != 0);
+ }
+ }
+ else
+ {
+ SkScalar dstX = SkIntToScalar(x);
+ SkScalar dstY = SkIntToScalar(y);
+ do {
+ dstProc(fDstToIndex, dstX, dstY, &srcPt);
+ unsigned fi = proc(SkScalarToFixed(srcPt.fX));
+ SkASSERT(fi <= 0xFFFF);
+
+ int index = fi >> (16 - kCache16Bits);
+#ifdef TEST_GRADIENT_DITHER
+ *dstC++ = cache[toggle + index];
+ toggle ^= (1 << kCache16Bits);
+#else
+ *dstC++ = cache[index];
+#endif
+
+ dstX += SK_Scalar1;
+ } while (--count != 0);
+ }
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+#define kSQRT_TABLE_BITS 11
+#define kSQRT_TABLE_SIZE (1 << kSQRT_TABLE_BITS)
+
+#include "SkRadialGradient_Table.h"
+
+#if defined(SK_BUILD_FOR_WIN32) && defined(SK_DEBUG)
+
+#include <stdio.h>
+
+void SkRadialGradient_BuildTable()
+{
+ // build it 0..127 x 0..127, so we use 2^15 - 1 in the numerator for our "fixed" table
+
+ FILE* file = ::fopen("SkRadialGradient_Table.h", "w");
+ SkASSERT(file);
+ ::fprintf(file, "static const uint8_t gSqrt8Table[] = {\n");
+
+ for (int i = 0; i < kSQRT_TABLE_SIZE; i++)
+ {
+ if ((i & 15) == 0)
+ ::fprintf(file, "\t");
+
+ uint8_t value = SkToU8(SkFixedSqrt(i * SK_Fixed1 / kSQRT_TABLE_SIZE) >> 8);
+
+ ::fprintf(file, "0x%02X", value);
+ if (i < kSQRT_TABLE_SIZE-1)
+ ::fprintf(file, ", ");
+ if ((i & 15) == 15)
+ ::fprintf(file, "\n");
+ }
+ ::fprintf(file, "};\n");
+ ::fclose(file);
+}
+
+#endif
+
+
+static void rad_to_unit_matrix(const SkPoint& center, SkScalar radius, SkMatrix* matrix)
+{
+ SkScalar inv = SkScalarInvert(radius);
+
+ matrix->setTranslate(-center.fX, -center.fY);
+ matrix->postScale(inv, inv);
+}
+
+class Radial_Gradient : public Gradient_Shader {
+public:
+ Radial_Gradient(const SkPoint& center, SkScalar radius,
+ const SkColor colors[], const SkScalar pos[], int colorCount,
+ SkShader::TileMode mode, SkUnitMapper* mapper)
+ : Gradient_Shader(colors, pos, colorCount, mode, mapper)
+ {
+ // make sure our table is insync with our current #define for kSQRT_TABLE_SIZE
+ SkASSERT(sizeof(gSqrt8Table) == kSQRT_TABLE_SIZE);
+
+ rad_to_unit_matrix(center, radius, &fPtsToUnit);
+ }
+ virtual void shadeSpan(int x, int y, SkPMColor dstC[], int count)
+ {
+ SkASSERT(count > 0);
+
+ SkPoint srcPt;
+ SkMatrix::MapXYProc dstProc = fDstToIndexProc;
+ TileProc proc = fTileProc;
+ const SkPMColor* cache = this->getCache32();
+
+ if (fDstToIndexClass != kPerspective_MatrixClass)
+ {
+ dstProc(fDstToIndex, SkIntToScalar(x), SkIntToScalar(y), &srcPt);
+ SkFixed dx, fx = SkScalarToFixed(srcPt.fX);
+ SkFixed dy, fy = SkScalarToFixed(srcPt.fY);
+
+ if (fDstToIndexClass == kFixedStepInX_MatrixClass)
+ {
+ SkFixed storage[2];
+ (void)fDstToIndex.fixedStepInX(SkIntToScalar(y), &storage[0], &storage[1]);
+ dx = storage[0];
+ dy = storage[1];
+ }
+ else
+ {
+ SkASSERT(fDstToIndexClass == kLinear_MatrixClass);
+ dx = SkScalarToFixed(fDstToIndex.getScaleX());
+ dy = SkScalarToFixed(fDstToIndex.getSkewY());
+ }
+
+ if (proc == clamp_tileproc)
+ {
+ const uint8_t* sqrt_table = gSqrt8Table;
+ fx >>= 1;
+ dx >>= 1;
+ fy >>= 1;
+ dy >>= 1;
+ do {
+ unsigned xx = SkPin32(fx, -0xFFFF >> 1, 0xFFFF >> 1);
+ unsigned fi = SkPin32(fy, -0xFFFF >> 1, 0xFFFF >> 1);
+ fi = (xx * xx + fi * fi) >> (14 + 16 - kSQRT_TABLE_BITS);
+ fi = SkFastMin32(fi, 0xFFFF >> (16 - kSQRT_TABLE_BITS));
+ *dstC++ = cache[sqrt_table[fi] >> (8 - kCache32Bits)];
+ fx += dx;
+ fy += dy;
+ } while (--count != 0);
+ }
+ else if (proc == mirror_tileproc)
+ {
+ do {
+ SkFixed dist = SkFixedSqrt(SkFixedSquare(fx) + SkFixedSquare(fy));
+ unsigned fi = mirror_tileproc(dist);
+ SkASSERT(fi <= 0xFFFF);
+ *dstC++ = cache[fi >> (16 - kCache32Bits)];
+ fx += dx;
+ fy += dy;
+ } while (--count != 0);
+ }
+ else
+ {
+ SkASSERT(proc == repeat_tileproc);
+ do {
+ SkFixed dist = SkFixedSqrt(SkFixedSquare(fx) + SkFixedSquare(fy));
+ unsigned fi = repeat_tileproc(dist);
+ SkASSERT(fi <= 0xFFFF);
+ *dstC++ = cache[fi >> (16 - kCache32Bits)];
+ fx += dx;
+ fy += dy;
+ } while (--count != 0);
+ }
+ }
+ else // perspective case
+ {
+ SkScalar dstX = SkIntToScalar(x);
+ SkScalar dstY = SkIntToScalar(y);
+ do {
+ dstProc(fDstToIndex, dstX, dstY, &srcPt);
+ unsigned fi = proc(SkScalarToFixed(srcPt.length()));
+ SkASSERT(fi <= 0xFFFF);
+ *dstC++ = cache[fi >> (16 - kCache32Bits)];
+ dstX += SK_Scalar1;
+ } while (--count != 0);
+ }
+ }
+ virtual void shadeSpan16(int x, int y, uint16_t dstC[], int count)
+ {
+ SkASSERT(count > 0);
+
+ SkPoint srcPt;
+ SkMatrix::MapXYProc dstProc = fDstToIndexProc;
+ TileProc proc = fTileProc;
+ const uint16_t* cache = this->getCache16();
+#ifdef TEST_GRADIENT_DITHER
+ int toggle = ((x ^ y) & 1) << kCache16Bits;
+#endif
+
+ if (fDstToIndexClass != kPerspective_MatrixClass)
+ {
+ dstProc(fDstToIndex, SkIntToScalar(x), SkIntToScalar(y), &srcPt);
+ SkFixed dx, fx = SkScalarToFixed(srcPt.fX);
+ SkFixed dy, fy = SkScalarToFixed(srcPt.fY);
+
+ if (fDstToIndexClass == kFixedStepInX_MatrixClass)
+ {
+ SkFixed storage[2];
+ (void)fDstToIndex.fixedStepInX(SkIntToScalar(y), &storage[0], &storage[1]);
+ dx = storage[0];
+ dy = storage[1];
+ }
+ else
+ {
+ SkASSERT(fDstToIndexClass == kLinear_MatrixClass);
+ dx = SkScalarToFixed(fDstToIndex.getScaleX());
+ dy = SkScalarToFixed(fDstToIndex.getSkewY());
+ }
+
+ if (proc == clamp_tileproc)
+ {
+ const uint8_t* sqrt_table = gSqrt8Table;
+
+ /* knock these down so we can pin against +- 0x7FFF, which is an immediate load,
+ rather than 0xFFFF which is slower. This is a compromise, since it reduces our
+ precision, but that appears to be visually OK. If we decide this is OK for
+ all of our cases, we could (it seems) put this scale-down into fDstToIndex,
+ to avoid having to do these extra shifts each time.
+ */
+ fx >>= 1;
+ dx >>= 1;
+ fy >>= 1;
+ dy >>= 1;
+ if (dy == 0) // might perform this check for the other modes, but the win will be a smaller % of the total
+ {
+ fy = SkPin32(fy, -0xFFFF >> 1, 0xFFFF >> 1);
+ fy *= fy;
+ do {
+ unsigned xx = SkPin32(fx, -0xFFFF >> 1, 0xFFFF >> 1);
+ unsigned fi = (xx * xx + fy) >> (14 + 16 - kSQRT_TABLE_BITS);
+ fi = SkFastMin32(fi, 0xFFFF >> (16 - kSQRT_TABLE_BITS));
+ fx += dx;
+#ifdef TEST_GRADIENT_DITHER
+ *dstC++ = cache[toggle + (sqrt_table[fi] >> (8 - kCache16Bits))];
+ toggle ^= (1 << kCache16Bits);
+#else
+ *dstC++ = cache[sqrt_table[fi] >> (8 - kCache16Bits)];
+#endif
+ } while (--count != 0);
+ }
+ else
+ {
+ do {
+ unsigned xx = SkPin32(fx, -0xFFFF >> 1, 0xFFFF >> 1);
+ unsigned fi = SkPin32(fy, -0xFFFF >> 1, 0xFFFF >> 1);
+ fi = (xx * xx + fi * fi) >> (14 + 16 - kSQRT_TABLE_BITS);
+ fi = SkFastMin32(fi, 0xFFFF >> (16 - kSQRT_TABLE_BITS));
+ fx += dx;
+ fy += dy;
+#ifdef TEST_GRADIENT_DITHER
+ *dstC++ = cache[toggle + (sqrt_table[fi] >> (8 - kCache16Bits))];
+ toggle ^= (1 << kCache16Bits);
+#else
+ *dstC++ = cache[sqrt_table[fi] >> (8 - kCache16Bits)];
+#endif
+ } while (--count != 0);
+ }
+ }
+ else if (proc == mirror_tileproc)
+ {
+ do {
+ SkFixed dist = SkFixedSqrt(SkFixedSquare(fx) + SkFixedSquare(fy));
+ unsigned fi = mirror_tileproc(dist);
+ SkASSERT(fi <= 0xFFFF);
+ fx += dx;
+ fy += dy;
+#ifdef TEST_GRADIENT_DITHER
+ *dstC++ = cache[toggle + (fi >> (16 - kCache16Bits))];
+ toggle ^= (1 << kCache16Bits);
+#else
+ *dstC++ = cache[fi >> (16 - kCache16Bits)];
+#endif
+ } while (--count != 0);
+ }
+ else
+ {
+ SkASSERT(proc == repeat_tileproc);
+ do {
+ SkFixed dist = SkFixedSqrt(SkFixedSquare(fx) + SkFixedSquare(fy));
+ unsigned fi = repeat_tileproc(dist);
+ SkASSERT(fi <= 0xFFFF);
+ fx += dx;
+ fy += dy;
+#ifdef TEST_GRADIENT_DITHER
+ *dstC++ = cache[toggle + (fi >> (16 - kCache16Bits))];
+ toggle ^= (1 << kCache16Bits);
+#else
+ *dstC++ = cache[fi >> (16 - kCache16Bits)];
+#endif
+ } while (--count != 0);
+ }
+ }
+ else // perspective case
+ {
+ SkScalar dstX = SkIntToScalar(x);
+ SkScalar dstY = SkIntToScalar(y);
+ do {
+ dstProc(fDstToIndex, dstX, dstY, &srcPt);
+ unsigned fi = proc(SkScalarToFixed(srcPt.length()));
+ SkASSERT(fi <= 0xFFFF);
+
+ int index = fi >> (16 - kCache16Bits);
+#ifdef TEST_GRADIENT_DITHER
+ *dstC++ = cache[toggle + index];
+ toggle ^= (1 << kCache16Bits);
+#else
+ *dstC++ = cache[index];
+#endif
+
+ dstX += SK_Scalar1;
+ } while (--count != 0);
+ }
+ }
+
+ static SkFlattenable* CreateProc(SkFlattenableReadBuffer& buffer) {
+ return SkNEW_ARGS(Radial_Gradient, (buffer));
+ }
+
+protected:
+ Radial_Gradient(SkFlattenableReadBuffer& buffer) : Gradient_Shader(buffer) {};
+ virtual Factory getFactory() { return CreateProc; }
+
+private:
+ typedef Gradient_Shader INHERITED;
+};
+
+///////////////////////////////////////////////////////////////////////////////
+
+class Sweep_Gradient : public Gradient_Shader {
+public:
+ Sweep_Gradient(SkScalar cx, SkScalar cy, const SkColor colors[],
+ const SkScalar pos[], int count, SkUnitMapper* mapper)
+ : Gradient_Shader(colors, pos, count, SkShader::kClamp_TileMode, mapper)
+ {
+ fPtsToUnit.setTranslate(-cx, -cy);
+ }
+ virtual void shadeSpan(int x, int y, SkPMColor dstC[], int count);
+ virtual void shadeSpan16(int x, int y, uint16_t dstC[], int count);
+
+ static SkFlattenable* CreateProc(SkFlattenableReadBuffer& buffer) {
+ return SkNEW_ARGS(Sweep_Gradient, (buffer));
+ }
+
+protected:
+ Sweep_Gradient(SkFlattenableReadBuffer& buffer) : Gradient_Shader(buffer) {}
+
+ virtual Factory getFactory() { return CreateProc; }
+
+private:
+ typedef Gradient_Shader INHERITED;
+};
+
+#ifdef COMPUTE_SWEEP_TABLE
+#define PI 3.14159265
+static bool gSweepTableReady;
+static uint8_t gSweepTable[65];
+
+/* Our table stores precomputed values for atan: [0...1] -> [0..PI/4]
+ We scale the results to [0..32]
+*/
+static const uint8_t* build_sweep_table()
+{
+ if (!gSweepTableReady)
+ {
+ const int N = 65;
+ const double DENOM = N - 1;
+
+ for (int i = 0; i < N; i++)
+ {
+ double arg = i / DENOM;
+ double v = atan(arg);
+ int iv = (int)round(v * DENOM * 2 / PI);
+// printf("[%d] atan(%g) = %g %d\n", i, arg, v, iv);
+ printf("%d, ", iv);
+ gSweepTable[i] = iv;
+ }
+ gSweepTableReady = true;
+ }
+ return gSweepTable;
+}
+#else
+static const uint8_t gSweepTable[] = {
+ 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9,
+ 10, 11, 11, 12, 12, 13, 13, 14, 15, 15, 16, 16, 17, 17, 18, 18,
+ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 25, 26,
+ 26, 27, 27, 27, 28, 28, 29, 29, 29, 30, 30, 30, 31, 31, 31, 32,
+ 32
+};
+static const uint8_t* build_sweep_table() { return gSweepTable; }
+#endif
+
+// divide numer/denom, with a bias of 6bits. Assumes numer <= denom
+// and denom != 0. Since our table is 6bits big (+1), this is a nice fit.
+// Same as (but faster than) SkFixedDiv(numer, denom) >> 10
+
+//unsigned div_64(int numer, int denom);
+static unsigned div_64(int numer, int denom)
+{
+ SkASSERT(numer <= denom);
+ SkASSERT(numer > 0);
+ SkASSERT(denom > 0);
+
+ int nbits = SkCLZ(numer);
+ int dbits = SkCLZ(denom);
+ int bits = 6 - nbits + dbits;
+ SkASSERT(bits <= 6);
+
+ if (bits < 0) // detect underflow
+ return 0;
+
+ denom <<= dbits - 1;
+ numer <<= nbits - 1;
+
+ unsigned result = 0;
+
+ // do the first one
+ if ((numer -= denom) >= 0)
+ result = 1;
+ else
+ numer += denom;
+
+ // Now fall into our switch statement if there are more bits to compute
+ if (bits > 0)
+ {
+ // make room for the rest of the answer bits
+ result <<= bits;
+ switch (bits) {
+ case 6:
+ if ((numer = (numer << 1) - denom) >= 0)
+ result |= 32;
+ else
+ numer += denom;
+ case 5:
+ if ((numer = (numer << 1) - denom) >= 0)
+ result |= 16;
+ else
+ numer += denom;
+ case 4:
+ if ((numer = (numer << 1) - denom) >= 0)
+ result |= 8;
+ else
+ numer += denom;
+ case 3:
+ if ((numer = (numer << 1) - denom) >= 0)
+ result |= 4;
+ else
+ numer += denom;
+ case 2:
+ if ((numer = (numer << 1) - denom) >= 0)
+ result |= 2;
+ else
+ numer += denom;
+ case 1:
+ default: // not strictly need, but makes GCC make better ARM code
+ if ((numer = (numer << 1) - denom) >= 0)
+ result |= 1;
+ else
+ numer += denom;
+ }
+ }
+ return result;
+}
+
+// Given x,y in the first quadrant, return 0..63 for the angle [0..90]
+static unsigned atan_0_90(SkFixed y, SkFixed x)
+{
+#ifdef SK_DEBUG
+ {
+ static bool gOnce;
+ if (!gOnce)
+ {
+ gOnce = true;
+ SkASSERT(div_64(55, 55) == 64);
+ SkASSERT(div_64(128, 256) == 32);
+ SkASSERT(div_64(2326528, 4685824) == 31);
+ SkASSERT(div_64(753664, 5210112) == 9);
+ SkASSERT(div_64(229376, 4882432) == 3);
+ SkASSERT(div_64(2, 64) == 2);
+ SkASSERT(div_64(1, 64) == 1);
+ // test that we handle underflow correctly
+ SkASSERT(div_64(12345, 0x54321234) == 0);
+ }
+ }
+#endif
+
+ SkASSERT(y > 0 && x > 0);
+ const uint8_t* table = build_sweep_table();
+
+ unsigned result;
+ bool swap = (x < y);
+ if (swap)
+ {
+ // first part of the atan(v) = PI/2 - atan(1/v) identity
+ // since our div_64 and table want v <= 1, where v = y/x
+ SkTSwap<SkFixed>(x, y);
+ }
+
+ result = div_64(y, x);
+
+#ifdef SK_DEBUG
+ {
+ unsigned result2 = SkDivBits(y, x, 6);
+ SkASSERT(result2 == result ||
+ (result == 1 && result2 == 0));
+ }
+#endif
+
+ SkASSERT(result < SK_ARRAY_COUNT(gSweepTable));
+ result = table[result];
+
+ if (swap)
+ {
+ // complete the atan(v) = PI/2 - atan(1/v) identity
+ result = 64 - result;
+ // pin to 63
+ result -= result >> 6;
+ }
+
+ SkASSERT(result <= 63);
+ return result;
+}
+
+// returns angle in a circle [0..2PI) -> [0..255]
+static unsigned SkATan2_255(SkFixed y, SkFixed x)
+{
+ if (x == 0)
+ {
+ if (y == 0)
+ return 0;
+ return y < 0 ? 192 : 64;
+ }
+ if (y == 0)
+ return x < 0 ? 128 : 0;
+
+ /* Find the right quadrant for x,y
+ Since atan_0_90 only handles the first quadrant, we rotate x,y
+ appropriately before calling it, and then add the right amount
+ to account for the real quadrant.
+ quadrant 0 : add 0 | x > 0 && y > 0
+ quadrant 1 : add 64 (90 degrees) | x < 0 && y > 0
+ quadrant 2 : add 128 (180 degrees) | x < 0 && y < 0
+ quadrant 3 : add 192 (270 degrees) | x > 0 && y < 0
+
+ map x<0 to (1 << 6)
+ map y<0 to (3 << 6)
+ add = map_x ^ map_y
+ */
+ int xsign = x >> 31;
+ int ysign = y >> 31;
+ int add = ((-xsign) ^ (ysign & 3)) << 6;
+
+#ifdef SK_DEBUG
+ if (0 == add)
+ SkASSERT(x > 0 && y > 0);
+ else if (64 == add)
+ SkASSERT(x < 0 && y > 0);
+ else if (128 == add)
+ SkASSERT(x < 0 && y < 0);
+ else if (192 == add)
+ SkASSERT(x > 0 && y < 0);
+ else
+ SkASSERT(!"bad value for add");
+#endif
+
+ /* This ^ trick makes x, y positive, and the swap<> handles quadrants
+ where we need to rotate x,y by 90 or -90
+ */
+ x = (x ^ xsign) - xsign;
+ y = (y ^ ysign) - ysign;
+ if (add & 64) // quads 1 or 3 need to swap x,y
+ SkTSwap<SkFixed>(x, y);
+
+ unsigned result = add + atan_0_90(y, x);
+ SkASSERT(result < 256);
+ return result;
+}
+
+void Sweep_Gradient::shadeSpan(int x, int y, SkPMColor dstC[], int count)
+{
+ SkMatrix::MapXYProc proc = fDstToIndexProc;
+ const SkMatrix& matrix = fDstToIndex;
+ const SkPMColor* cache = this->getCache32();
+ SkPoint srcPt;
+
+ if (fDstToIndexClass != kPerspective_MatrixClass)
+ {
+ proc(matrix, SkIntToScalar(x) + SK_ScalarHalf,
+ SkIntToScalar(y) + SK_ScalarHalf, &srcPt);
+ SkFixed dx, fx = SkScalarToFixed(srcPt.fX);
+ SkFixed dy, fy = SkScalarToFixed(srcPt.fY);
+
+ if (fDstToIndexClass == kFixedStepInX_MatrixClass)
+ {
+ SkFixed storage[2];
+ (void)matrix.fixedStepInX(SkIntToScalar(y) + SK_ScalarHalf,
+ &storage[0], &storage[1]);
+ dx = storage[0];
+ dy = storage[1];
+ }
+ else
+ {
+ SkASSERT(fDstToIndexClass == kLinear_MatrixClass);
+ dx = SkScalarToFixed(matrix.getScaleX());
+ dy = SkScalarToFixed(matrix.getSkewY());
+ }
+
+ for (; count > 0; --count)
+ {
+ *dstC++ = cache[SkATan2_255(fy, fx)];
+ fx += dx;
+ fy += dy;
+ }
+ }
+ else // perspective case
+ {
+ for (int stop = x + count; x < stop; x++)
+ {
+ proc(matrix, SkIntToScalar(x) + SK_ScalarHalf,
+ SkIntToScalar(y) + SK_ScalarHalf, &srcPt);
+
+ int index = SkATan2_255(SkScalarToFixed(srcPt.fY),
+ SkScalarToFixed(srcPt.fX));
+ *dstC++ = cache[index];
+ }
+ }
+}
+
+void Sweep_Gradient::shadeSpan16(int x, int y, uint16_t dstC[], int count)
+{
+ SkMatrix::MapXYProc proc = fDstToIndexProc;
+ const SkMatrix& matrix = fDstToIndex;
+ const uint16_t* cache = this->getCache16();
+ int toggle = ((x ^ y) & 1) << kCache16Bits;
+ SkPoint srcPt;
+
+ if (fDstToIndexClass != kPerspective_MatrixClass)
+ {
+ proc(matrix, SkIntToScalar(x) + SK_ScalarHalf,
+ SkIntToScalar(y) + SK_ScalarHalf, &srcPt);
+ SkFixed dx, fx = SkScalarToFixed(srcPt.fX);
+ SkFixed dy, fy = SkScalarToFixed(srcPt.fY);
+
+ if (fDstToIndexClass == kFixedStepInX_MatrixClass)
+ {
+ SkFixed storage[2];
+ (void)matrix.fixedStepInX(SkIntToScalar(y) + SK_ScalarHalf,
+ &storage[0], &storage[1]);
+ dx = storage[0];
+ dy = storage[1];
+ }
+ else
+ {
+ SkASSERT(fDstToIndexClass == kLinear_MatrixClass);
+ dx = SkScalarToFixed(matrix.getScaleX());
+ dy = SkScalarToFixed(matrix.getSkewY());
+ }
+
+ for (; count > 0; --count)
+ {
+ int index = SkATan2_255(fy, fx) >> (8 - kCache16Bits);
+ *dstC++ = cache[toggle + index];
+ toggle ^= (1 << kCache16Bits);
+ fx += dx;
+ fy += dy;
+ }
+ }
+ else // perspective case
+ {
+ for (int stop = x + count; x < stop; x++)
+ {
+ proc(matrix, SkIntToScalar(x) + SK_ScalarHalf,
+ SkIntToScalar(y) + SK_ScalarHalf, &srcPt);
+
+ int index = SkATan2_255(SkScalarToFixed(srcPt.fY),
+ SkScalarToFixed(srcPt.fX));
+ index >>= (8 - kCache16Bits);
+ *dstC++ = cache[toggle + index];
+ toggle ^= (1 << kCache16Bits);
+ }
+ }
+}
+
+///////////////////////////////////////////////////////////////////////////
+///////////////////////////////////////////////////////////////////////////
+
+// assumes colors is SkColor* and pos is SkScalar*
+#define EXPAND_1_COLOR(count) \
+ SkColor tmp[2]; \
+ do { \
+ if (1 == count) { \
+ tmp[0] = tmp[1] = colors[0]; \
+ colors = tmp; \
+ pos = NULL; \
+ count = 2; \
+ } \
+ } while (0)
+
+SkShader* SkGradientShader::CreateLinear( const SkPoint pts[2],
+ const SkColor colors[], const SkScalar pos[], int colorCount,
+ SkShader::TileMode mode, SkUnitMapper* mapper)
+{
+ if (NULL == pts || NULL == colors || colorCount < 1) {
+ return NULL;
+ }
+ EXPAND_1_COLOR(colorCount);
+
+ return SkNEW_ARGS(Linear_Gradient, (pts, colors, pos, colorCount, mode, mapper));
+}
+
+SkShader* SkGradientShader::CreateRadial( const SkPoint& center, SkScalar radius,
+ const SkColor colors[], const SkScalar pos[], int colorCount,
+ SkShader::TileMode mode, SkUnitMapper* mapper)
+{
+ if (radius <= 0 || NULL == colors || colorCount < 1) {
+ return NULL;
+ }
+ EXPAND_1_COLOR(colorCount);
+
+ return SkNEW_ARGS(Radial_Gradient, (center, radius, colors, pos, colorCount, mode, mapper));
+}
+
+SkShader* SkGradientShader::CreateSweep(SkScalar cx, SkScalar cy,
+ const SkColor colors[],
+ const SkScalar pos[],
+ int count, SkUnitMapper* mapper)
+{
+ if (NULL == colors || count < 1) {
+ return NULL;
+ }
+ EXPAND_1_COLOR(count);
+
+ return SkNEW_ARGS(Sweep_Gradient, (cx, cy, colors, pos, count, mapper));
+}
+
+static SkFlattenable::Registrar gLinearGradientReg("Linear_Gradient",
+ Linear_Gradient::CreateProc);
+
+static SkFlattenable::Registrar gRadialGradientReg("Radial_Gradient",
+ Radial_Gradient::CreateProc);
+
+static SkFlattenable::Registrar gSweepGradientReg("Sweep_Gradient",
+ Sweep_Gradient::CreateProc);
+