aboutsummaryrefslogtreecommitdiffstats
path: root/src/core/SkMath.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/SkMath.cpp')
-rw-r--r--src/core/SkMath.cpp938
1 files changed, 938 insertions, 0 deletions
diff --git a/src/core/SkMath.cpp b/src/core/SkMath.cpp
new file mode 100644
index 0000000..e0babeb
--- /dev/null
+++ b/src/core/SkMath.cpp
@@ -0,0 +1,938 @@
+/*
+ * Copyright (C) 2006-2008 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "SkMath.h"
+#include "SkCordic.h"
+#include "SkFloatBits.h"
+#include "SkFloatingPoint.h"
+#include "Sk64.h"
+#include "SkScalar.h"
+
+#ifdef SK_SCALAR_IS_FLOAT
+ const uint32_t gIEEENotANumber = 0x7FFFFFFF;
+ const uint32_t gIEEEInfinity = 0x7F800000;
+#endif
+
+#define sub_shift(zeros, x, n) \
+ zeros -= n; \
+ x >>= n
+
+int SkCLZ_portable(uint32_t x) {
+ if (x == 0) {
+ return 32;
+ }
+
+#ifdef SK_CPU_HAS_CONDITIONAL_INSTR
+ int zeros = 31;
+ if (x & 0xFFFF0000) {
+ sub_shift(zeros, x, 16);
+ }
+ if (x & 0xFF00) {
+ sub_shift(zeros, x, 8);
+ }
+ if (x & 0xF0) {
+ sub_shift(zeros, x, 4);
+ }
+ if (x & 0xC) {
+ sub_shift(zeros, x, 2);
+ }
+ if (x & 0x2) {
+ sub_shift(zeros, x, 1);
+ }
+#else
+ int zeros = ((x >> 16) - 1) >> 31 << 4;
+ x <<= zeros;
+
+ int nonzero = ((x >> 24) - 1) >> 31 << 3;
+ zeros += nonzero;
+ x <<= nonzero;
+
+ nonzero = ((x >> 28) - 1) >> 31 << 2;
+ zeros += nonzero;
+ x <<= nonzero;
+
+ nonzero = ((x >> 30) - 1) >> 31 << 1;
+ zeros += nonzero;
+ x <<= nonzero;
+
+ zeros += (~x) >> 31;
+#endif
+
+ return zeros;
+}
+
+int32_t SkMulDiv(int32_t numer1, int32_t numer2, int32_t denom) {
+ SkASSERT(denom);
+
+ Sk64 tmp;
+ tmp.setMul(numer1, numer2);
+ tmp.div(denom, Sk64::kTrunc_DivOption);
+ return tmp.get32();
+}
+
+int32_t SkMulShift(int32_t a, int32_t b, unsigned shift) {
+ int sign = SkExtractSign(a ^ b);
+
+ if (shift > 63) {
+ return sign;
+ }
+
+ a = SkAbs32(a);
+ b = SkAbs32(b);
+
+ uint32_t ah = a >> 16;
+ uint32_t al = a & 0xFFFF;
+ uint32_t bh = b >> 16;
+ uint32_t bl = b & 0xFFFF;
+
+ uint32_t A = ah * bh;
+ uint32_t B = ah * bl + al * bh;
+ uint32_t C = al * bl;
+
+ /* [ A ]
+ [ B ]
+ [ C ]
+ */
+ uint32_t lo = C + (B << 16);
+ int32_t hi = A + (B >> 16) + (lo < C);
+
+ if (sign < 0) {
+ hi = -hi - Sk32ToBool(lo);
+ lo = 0 - lo;
+ }
+
+ if (shift == 0) {
+#ifdef SK_DEBUGx
+ SkASSERT(((int32_t)lo >> 31) == hi);
+#endif
+ return lo;
+ } else if (shift >= 32) {
+ return hi >> (shift - 32);
+ } else {
+#ifdef SK_DEBUGx
+ int32_t tmp = hi >> shift;
+ SkASSERT(tmp == 0 || tmp == -1);
+#endif
+ // we want (hi << (32 - shift)) | (lo >> shift) but rounded
+ int roundBit = (lo >> (shift - 1)) & 1;
+ return ((hi << (32 - shift)) | (lo >> shift)) + roundBit;
+ }
+}
+
+SkFixed SkFixedMul_portable(SkFixed a, SkFixed b) {
+#if 0
+ Sk64 tmp;
+
+ tmp.setMul(a, b);
+ tmp.shiftRight(16);
+ return tmp.fLo;
+#elif defined(SkLONGLONG)
+ return static_cast<SkFixed>((SkLONGLONG)a * b >> 16);
+#else
+ int sa = SkExtractSign(a);
+ int sb = SkExtractSign(b);
+ // now make them positive
+ a = SkApplySign(a, sa);
+ b = SkApplySign(b, sb);
+
+ uint32_t ah = a >> 16;
+ uint32_t al = a & 0xFFFF;
+ uint32_t bh = b >> 16;
+ uint32_t bl = b & 0xFFFF;
+
+ uint32_t R = ah * b + al * bh + (al * bl >> 16);
+
+ return SkApplySign(R, sa ^ sb);
+#endif
+}
+
+SkFract SkFractMul_portable(SkFract a, SkFract b) {
+#if 0
+ Sk64 tmp;
+ tmp.setMul(a, b);
+ return tmp.getFract();
+#elif defined(SkLONGLONG)
+ return static_cast<SkFract>((SkLONGLONG)a * b >> 30);
+#else
+ int sa = SkExtractSign(a);
+ int sb = SkExtractSign(b);
+ // now make them positive
+ a = SkApplySign(a, sa);
+ b = SkApplySign(b, sb);
+
+ uint32_t ah = a >> 16;
+ uint32_t al = a & 0xFFFF;
+ uint32_t bh = b >> 16;
+ uint32_t bl = b & 0xFFFF;
+
+ uint32_t A = ah * bh;
+ uint32_t B = ah * bl + al * bh;
+ uint32_t C = al * bl;
+
+ /* [ A ]
+ [ B ]
+ [ C ]
+ */
+ uint32_t Lo = C + (B << 16);
+ uint32_t Hi = A + (B >>16) + (Lo < C);
+
+ SkASSERT((Hi >> 29) == 0); // else overflow
+
+ int32_t R = (Hi << 2) + (Lo >> 30);
+
+ return SkApplySign(R, sa ^ sb);
+#endif
+}
+
+int SkFixedMulCommon(SkFixed a, int b, int bias) {
+ // this function only works if b is 16bits
+ SkASSERT(b == (int16_t)b);
+ SkASSERT(b >= 0);
+
+ int sa = SkExtractSign(a);
+ a = SkApplySign(a, sa);
+ uint32_t ah = a >> 16;
+ uint32_t al = a & 0xFFFF;
+ uint32_t R = ah * b + ((al * b + bias) >> 16);
+ return SkApplySign(R, sa);
+}
+
+#ifdef SK_DEBUGx
+ #define TEST_FASTINVERT
+#endif
+
+SkFixed SkFixedFastInvert(SkFixed x) {
+/* Adapted (stolen) from gglRecip()
+*/
+
+ if (x == SK_Fixed1) {
+ return SK_Fixed1;
+ }
+
+ int sign = SkExtractSign(x);
+ uint32_t a = SkApplySign(x, sign);
+
+ if (a <= 2) {
+ return SkApplySign(SK_MaxS32, sign);
+ }
+
+#ifdef TEST_FASTINVERT
+ SkFixed orig = a;
+ uint32_t slow = SkFixedDiv(SK_Fixed1, a);
+#endif
+
+ // normalize a
+ int lz = SkCLZ(a);
+ a = a << lz >> 16;
+
+ // compute 1/a approximation (0.5 <= a < 1.0)
+ uint32_t r = 0x17400 - a; // (2.90625 (~2.914) - 2*a) >> 1
+
+ // Newton-Raphson iteration:
+ // x = r*(2 - a*r) = ((r/2)*(1 - a*r/2))*4
+ r = ( (0x10000 - ((a*r)>>16)) * r ) >> 15;
+ r = ( (0x10000 - ((a*r)>>16)) * r ) >> (30 - lz);
+
+#ifdef TEST_FASTINVERT
+ SkDebugf("SkFixedFastInvert(%x %g) = %x %g Slow[%x %g]\n",
+ orig, orig/65536.,
+ r, r/65536.,
+ slow, slow/65536.);
+#endif
+
+ return SkApplySign(r, sign);
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+#define DIVBITS_ITER(n) \
+ case n: \
+ if ((numer = (numer << 1) - denom) >= 0) \
+ result |= 1 << (n - 1); else numer += denom
+
+int32_t SkDivBits(int32_t numer, int32_t denom, int shift_bias) {
+ SkASSERT(denom != 0);
+ if (numer == 0) {
+ return 0;
+ }
+
+ // make numer and denom positive, and sign hold the resulting sign
+ int32_t sign = SkExtractSign(numer ^ denom);
+ numer = SkAbs32(numer);
+ denom = SkAbs32(denom);
+
+ int nbits = SkCLZ(numer) - 1;
+ int dbits = SkCLZ(denom) - 1;
+ int bits = shift_bias - nbits + dbits;
+
+ if (bits < 0) { // answer will underflow
+ return 0;
+ }
+ if (bits > 31) { // answer will overflow
+ return SkApplySign(SK_MaxS32, sign);
+ }
+
+ denom <<= dbits;
+ numer <<= nbits;
+
+ SkFixed result = 0;
+
+ // do the first one
+ if ((numer -= denom) >= 0) {
+ result = 1;
+ } else {
+ numer += denom;
+ }
+
+ // Now fall into our switch statement if there are more bits to compute
+ if (bits > 0) {
+ // make room for the rest of the answer bits
+ result <<= bits;
+ switch (bits) {
+ DIVBITS_ITER(31); DIVBITS_ITER(30); DIVBITS_ITER(29);
+ DIVBITS_ITER(28); DIVBITS_ITER(27); DIVBITS_ITER(26);
+ DIVBITS_ITER(25); DIVBITS_ITER(24); DIVBITS_ITER(23);
+ DIVBITS_ITER(22); DIVBITS_ITER(21); DIVBITS_ITER(20);
+ DIVBITS_ITER(19); DIVBITS_ITER(18); DIVBITS_ITER(17);
+ DIVBITS_ITER(16); DIVBITS_ITER(15); DIVBITS_ITER(14);
+ DIVBITS_ITER(13); DIVBITS_ITER(12); DIVBITS_ITER(11);
+ DIVBITS_ITER(10); DIVBITS_ITER( 9); DIVBITS_ITER( 8);
+ DIVBITS_ITER( 7); DIVBITS_ITER( 6); DIVBITS_ITER( 5);
+ DIVBITS_ITER( 4); DIVBITS_ITER( 3); DIVBITS_ITER( 2);
+ // we merge these last two together, makes GCC make better ARM
+ default:
+ DIVBITS_ITER( 1);
+ }
+ }
+
+ if (result < 0) {
+ result = SK_MaxS32;
+ }
+ return SkApplySign(result, sign);
+}
+
+/* mod(float numer, float denom) seems to always return the sign
+ of the numer, so that's what we do too
+*/
+SkFixed SkFixedMod(SkFixed numer, SkFixed denom) {
+ int sn = SkExtractSign(numer);
+ int sd = SkExtractSign(denom);
+
+ numer = SkApplySign(numer, sn);
+ denom = SkApplySign(denom, sd);
+
+ if (numer < denom) {
+ return SkApplySign(numer, sn);
+ } else if (numer == denom) {
+ return 0;
+ } else {
+ SkFixed div = SkFixedDiv(numer, denom);
+ return SkApplySign(SkFixedMul(denom, div & 0xFFFF), sn);
+ }
+}
+
+/* www.worldserver.com/turk/computergraphics/FixedSqrt.pdf
+*/
+int32_t SkSqrtBits(int32_t x, int count) {
+ SkASSERT(x >= 0 && count > 0 && (unsigned)count <= 30);
+
+ uint32_t root = 0;
+ uint32_t remHi = 0;
+ uint32_t remLo = x;
+
+ do {
+ root <<= 1;
+
+ remHi = (remHi<<2) | (remLo>>30);
+ remLo <<= 2;
+
+ uint32_t testDiv = (root << 1) + 1;
+ if (remHi >= testDiv) {
+ remHi -= testDiv;
+ root++;
+ }
+ } while (--count >= 0);
+
+ return root;
+}
+
+int32_t SkCubeRootBits(int32_t value, int bits) {
+ SkASSERT(bits > 0);
+
+ int sign = SkExtractSign(value);
+ value = SkApplySign(value, sign);
+
+ uint32_t root = 0;
+ uint32_t curr = (uint32_t)value >> 30;
+ value <<= 2;
+
+ do {
+ root <<= 1;
+ uint32_t guess = root * root + root;
+ guess = (guess << 1) + guess; // guess *= 3
+ if (guess < curr) {
+ curr -= guess + 1;
+ root |= 1;
+ }
+ curr = (curr << 3) | ((uint32_t)value >> 29);
+ value <<= 3;
+ } while (--bits);
+
+ return SkApplySign(root, sign);
+}
+
+SkFixed SkFixedMean(SkFixed a, SkFixed b) {
+ Sk64 tmp;
+
+ tmp.setMul(a, b);
+ return tmp.getSqrt();
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+#ifdef SK_SCALAR_IS_FLOAT
+float SkScalarSinCos(float radians, float* cosValue) {
+ float sinValue = sk_float_sin(radians);
+
+ if (cosValue) {
+ *cosValue = sk_float_cos(radians);
+ if (SkScalarNearlyZero(*cosValue)) {
+ *cosValue = 0;
+ }
+ }
+
+ if (SkScalarNearlyZero(sinValue)) {
+ sinValue = 0;
+ }
+ return sinValue;
+}
+#endif
+
+#define INTERP_SINTABLE
+#define BUILD_TABLE_AT_RUNTIMEx
+
+#define kTableSize 256
+
+#ifdef BUILD_TABLE_AT_RUNTIME
+ static uint16_t gSkSinTable[kTableSize];
+
+ static void build_sintable(uint16_t table[]) {
+ for (int i = 0; i < kTableSize; i++) {
+ double rad = i * 3.141592653589793 / (2*kTableSize);
+ double val = sin(rad);
+ int ival = (int)(val * SK_Fixed1);
+ table[i] = SkToU16(ival);
+ }
+ }
+#else
+ #include "SkSinTable.h"
+#endif
+
+#define SK_Fract1024SizeOver2PI 0x28BE60 /* floatToFract(1024 / 2PI) */
+
+#ifdef INTERP_SINTABLE
+static SkFixed interp_table(const uint16_t table[], int index, int partial255) {
+ SkASSERT((unsigned)index < kTableSize);
+ SkASSERT((unsigned)partial255 <= 255);
+
+ SkFixed lower = table[index];
+ SkFixed upper = (index == kTableSize - 1) ? SK_Fixed1 : table[index + 1];
+
+ SkASSERT(lower < upper);
+ SkASSERT(lower >= 0);
+ SkASSERT(upper <= SK_Fixed1);
+
+ partial255 += (partial255 >> 7);
+ return lower + ((upper - lower) * partial255 >> 8);
+}
+#endif
+
+SkFixed SkFixedSinCos(SkFixed radians, SkFixed* cosValuePtr) {
+ SkASSERT(SK_ARRAY_COUNT(gSkSinTable) == kTableSize);
+
+#ifdef BUILD_TABLE_AT_RUNTIME
+ static bool gFirstTime = true;
+ if (gFirstTime) {
+ build_sintable(gSinTable);
+ gFirstTime = false;
+ }
+#endif
+
+ // make radians positive
+ SkFixed sinValue, cosValue;
+ int32_t cosSign = 0;
+ int32_t sinSign = SkExtractSign(radians);
+ radians = SkApplySign(radians, sinSign);
+ // scale it to 0...1023 ...
+
+#ifdef INTERP_SINTABLE
+ radians = SkMulDiv(radians, 2 * kTableSize * 256, SK_FixedPI);
+ int findex = radians & (kTableSize * 256 - 1);
+ int index = findex >> 8;
+ int partial = findex & 255;
+ sinValue = interp_table(gSkSinTable, index, partial);
+
+ findex = kTableSize * 256 - findex - 1;
+ index = findex >> 8;
+ partial = findex & 255;
+ cosValue = interp_table(gSkSinTable, index, partial);
+
+ int quad = ((unsigned)radians / (kTableSize * 256)) & 3;
+#else
+ radians = SkMulDiv(radians, 2 * kTableSize, SK_FixedPI);
+ int index = radians & (kTableSize - 1);
+
+ if (index == 0) {
+ sinValue = 0;
+ cosValue = SK_Fixed1;
+ } else {
+ sinValue = gSkSinTable[index];
+ cosValue = gSkSinTable[kTableSize - index];
+ }
+ int quad = ((unsigned)radians / kTableSize) & 3;
+#endif
+
+ if (quad & 1) {
+ SkTSwap<SkFixed>(sinValue, cosValue);
+ }
+ if (quad & 2) {
+ sinSign = ~sinSign;
+ }
+ if (((quad - 1) & 2) == 0) {
+ cosSign = ~cosSign;
+ }
+
+ // restore the sign for negative angles
+ sinValue = SkApplySign(sinValue, sinSign);
+ cosValue = SkApplySign(cosValue, cosSign);
+
+#ifdef SK_DEBUG
+ if (1) {
+ SkFixed sin2 = SkFixedMul(sinValue, sinValue);
+ SkFixed cos2 = SkFixedMul(cosValue, cosValue);
+ int diff = cos2 + sin2 - SK_Fixed1;
+ SkASSERT(SkAbs32(diff) <= 7);
+ }
+#endif
+
+ if (cosValuePtr) {
+ *cosValuePtr = cosValue;
+ }
+ return sinValue;
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+SkFixed SkFixedTan(SkFixed radians) { return SkCordicTan(radians); }
+SkFixed SkFixedASin(SkFixed x) { return SkCordicASin(x); }
+SkFixed SkFixedACos(SkFixed x) { return SkCordicACos(x); }
+SkFixed SkFixedATan2(SkFixed y, SkFixed x) { return SkCordicATan2(y, x); }
+SkFixed SkFixedExp(SkFixed x) { return SkCordicExp(x); }
+SkFixed SkFixedLog(SkFixed x) { return SkCordicLog(x); }
+
+///////////////////////////////////////////////////////////////////////////////
+///////////////////////////////////////////////////////////////////////////////
+
+#ifdef SK_DEBUG
+
+#include "SkRandom.h"
+
+#if defined(SkLONGLONG) && defined(SK_SUPPORT_UNITTEST)
+static int symmetric_fixmul(int a, int b) {
+ int sa = SkExtractSign(a);
+ int sb = SkExtractSign(b);
+
+ a = SkApplySign(a, sa);
+ b = SkApplySign(b, sb);
+
+#if 1
+ int c = (int)(((SkLONGLONG)a * b) >> 16);
+
+ return SkApplySign(c, sa ^ sb);
+#else
+ SkLONGLONG ab = (SkLONGLONG)a * b;
+ if (sa ^ sb) {
+ ab = -ab;
+ }
+ return ab >> 16;
+#endif
+}
+#endif
+
+#include "SkPoint.h"
+
+#ifdef SK_SUPPORT_UNITTEST
+static void check_length(const SkPoint& p, SkScalar targetLen) {
+#ifdef SK_CAN_USE_FLOAT
+ float x = SkScalarToFloat(p.fX);
+ float y = SkScalarToFloat(p.fY);
+ float len = sk_float_sqrt(x*x + y*y);
+
+ len /= SkScalarToFloat(targetLen);
+
+ SkASSERT(len > 0.999f && len < 1.001f);
+#endif
+}
+#endif
+
+#if defined(SK_CAN_USE_FLOAT) && defined(SK_SUPPORT_UNITTEST)
+
+static float nextFloat(SkRandom& rand) {
+ SkFloatIntUnion data;
+ data.fSignBitInt = rand.nextU();
+ return data.fFloat;
+}
+
+/* returns true if a == b as resulting from (int)x. Since it is undefined
+ what to do if the float exceeds 2^32-1, we check for that explicitly.
+*/
+static bool equal_float_native_skia(float x, uint32_t ni, uint32_t si) {
+ if (!(x == x)) { // NAN
+ return si == SK_MaxS32 || si == SK_MinS32;
+ }
+ // for out of range, C is undefined, but skia always should return NaN32
+ if (x > SK_MaxS32) {
+ return si == SK_MaxS32;
+ }
+ if (x < -SK_MaxS32) {
+ return si == SK_MinS32;
+ }
+ return si == ni;
+}
+
+static void assert_float_equal(const char op[], float x, uint32_t ni,
+ uint32_t si) {
+ if (!equal_float_native_skia(x, ni, si)) {
+ SkDebugf("-- %s float %g bits %x native %x skia %x\n", op, x, ni, si);
+ SkASSERT(!"oops");
+ }
+}
+
+static void test_float_cast(float x) {
+ int ix = (int)x;
+ int iix = SkFloatToIntCast(x);
+ assert_float_equal("cast", x, ix, iix);
+}
+
+static void test_float_floor(float x) {
+ int ix = (int)floor(x);
+ int iix = SkFloatToIntFloor(x);
+ assert_float_equal("floor", x, ix, iix);
+}
+
+static void test_float_round(float x) {
+ double xx = x + 0.5; // need intermediate double to avoid temp loss
+ int ix = (int)floor(xx);
+ int iix = SkFloatToIntRound(x);
+ assert_float_equal("round", x, ix, iix);
+}
+
+static void test_float_ceil(float x) {
+ int ix = (int)ceil(x);
+ int iix = SkFloatToIntCeil(x);
+ assert_float_equal("ceil", x, ix, iix);
+}
+
+static void test_float_conversions(float x) {
+ test_float_cast(x);
+ test_float_floor(x);
+ test_float_round(x);
+ test_float_ceil(x);
+}
+
+static void test_int2float(int ival) {
+ float x0 = (float)ival;
+ float x1 = SkIntToFloatCast(ival);
+ float x2 = SkIntToFloatCast_NoOverflowCheck(ival);
+ SkASSERT(x0 == x1);
+ SkASSERT(x0 == x2);
+}
+
+static void unittest_fastfloat() {
+ SkRandom rand;
+ size_t i;
+
+ static const float gFloats[] = {
+ 0.f, 1.f, 0.5f, 0.499999f, 0.5000001f, 1.f/3,
+ 0.000000001f, 1000000000.f, // doesn't overflow
+ 0.0000000001f, 10000000000.f // does overflow
+ };
+ for (i = 0; i < SK_ARRAY_COUNT(gFloats); i++) {
+// SkDebugf("---- test floats %g %d\n", gFloats[i], (int)gFloats[i]);
+ test_float_conversions(gFloats[i]);
+ test_float_conversions(-gFloats[i]);
+ }
+
+ for (int outer = 0; outer < 100; outer++) {
+ rand.setSeed(outer);
+ for (i = 0; i < 100000; i++) {
+ float x = nextFloat(rand);
+ test_float_conversions(x);
+ }
+
+ test_int2float(0);
+ test_int2float(1);
+ test_int2float(-1);
+ for (i = 0; i < 100000; i++) {
+ // for now only test ints that are 24bits or less, since we don't
+ // round (down) large ints the same as IEEE...
+ int ival = rand.nextU() & 0xFFFFFF;
+ test_int2float(ival);
+ test_int2float(-ival);
+ }
+ }
+}
+
+#endif
+
+#ifdef SK_SUPPORT_UNITTEST
+static void test_muldiv255() {
+#ifdef SK_CAN_USE_FLOAT
+ for (int a = 0; a <= 255; a++) {
+ for (int b = 0; b <= 255; b++) {
+ int ab = a * b;
+ float s = ab / 255.0f;
+ int round = (int)floorf(s + 0.5f);
+ int trunc = (int)floorf(s);
+
+ int iround = SkMulDiv255Round(a, b);
+ int itrunc = SkMulDiv255Trunc(a, b);
+
+ SkASSERT(iround == round);
+ SkASSERT(itrunc == trunc);
+
+ SkASSERT(itrunc <= iround);
+ SkASSERT(iround <= a);
+ SkASSERT(iround <= b);
+ }
+ }
+#endif
+}
+#endif
+
+void SkMath::UnitTest() {
+#ifdef SK_SUPPORT_UNITTEST
+ int i;
+ int32_t x;
+ SkRandom rand;
+
+ SkToS8(127); SkToS8(-128); SkToU8(255);
+ SkToS16(32767); SkToS16(-32768); SkToU16(65535);
+ SkToS32(2*1024*1024); SkToS32(-2*1024*1024); SkToU32(4*1024*1024);
+
+ SkCordic_UnitTest();
+
+ // these should assert
+#if 0
+ SkToS8(128);
+ SkToS8(-129);
+ SkToU8(256);
+ SkToU8(-5);
+
+ SkToS16(32768);
+ SkToS16(-32769);
+ SkToU16(65536);
+ SkToU16(-5);
+
+ if (sizeof(size_t) > 4) {
+ SkToS32(4*1024*1024);
+ SkToS32(-4*1024*1024);
+ SkToU32(5*1024*1024);
+ SkToU32(-5);
+ }
+#endif
+
+ test_muldiv255();
+
+#ifdef SK_DEBUG
+ {
+ SkScalar x = SK_ScalarNaN;
+ SkASSERT(SkScalarIsNaN(x));
+ }
+#endif
+
+ for (i = 1; i <= 10; i++) {
+ x = SkCubeRootBits(i*i*i, 11);
+ SkASSERT(x == i);
+ }
+
+ x = SkFixedSqrt(SK_Fixed1);
+ SkASSERT(x == SK_Fixed1);
+ x = SkFixedSqrt(SK_Fixed1/4);
+ SkASSERT(x == SK_Fixed1/2);
+ x = SkFixedSqrt(SK_Fixed1*4);
+ SkASSERT(x == SK_Fixed1*2);
+
+ x = SkFractSqrt(SK_Fract1);
+ SkASSERT(x == SK_Fract1);
+ x = SkFractSqrt(SK_Fract1/4);
+ SkASSERT(x == SK_Fract1/2);
+ x = SkFractSqrt(SK_Fract1/16);
+ SkASSERT(x == SK_Fract1/4);
+
+ for (i = 1; i < 100; i++) {
+ x = SkFixedSqrt(SK_Fixed1 * i * i);
+ SkASSERT(x == SK_Fixed1 * i);
+ }
+
+ for (i = 0; i < 1000; i++) {
+ int value = rand.nextS16();
+ int max = rand.nextU16();
+
+ int clamp = SkClampMax(value, max);
+ int clamp2 = value < 0 ? 0 : (value > max ? max : value);
+ SkASSERT(clamp == clamp2);
+ }
+
+ for (i = 0; i < 100000; i++) {
+ SkPoint p;
+
+ p.setLength(rand.nextS(), rand.nextS(), SK_Scalar1);
+ check_length(p, SK_Scalar1);
+ p.setLength(rand.nextS() >> 13, rand.nextS() >> 13, SK_Scalar1);
+ check_length(p, SK_Scalar1);
+ }
+
+ {
+ SkFixed result = SkFixedDiv(100, 100);
+ SkASSERT(result == SK_Fixed1);
+ result = SkFixedDiv(1, SK_Fixed1);
+ SkASSERT(result == 1);
+ }
+
+#ifdef SK_CAN_USE_FLOAT
+ unittest_fastfloat();
+#endif
+
+#ifdef SkLONGLONG
+ for (i = 0; i < 100000; i++) {
+ SkFixed numer = rand.nextS();
+ SkFixed denom = rand.nextS();
+ SkFixed result = SkFixedDiv(numer, denom);
+ SkLONGLONG check = ((SkLONGLONG)numer << 16) / denom;
+
+ (void)SkCLZ(numer);
+ (void)SkCLZ(denom);
+
+ SkASSERT(result != (SkFixed)SK_NaN32);
+ if (check > SK_MaxS32) {
+ check = SK_MaxS32;
+ } else if (check < -SK_MaxS32) {
+ check = SK_MinS32;
+ }
+ SkASSERT(result == (int32_t)check);
+
+ result = SkFractDiv(numer, denom);
+ check = ((SkLONGLONG)numer << 30) / denom;
+
+ SkASSERT(result != (SkFixed)SK_NaN32);
+ if (check > SK_MaxS32) {
+ check = SK_MaxS32;
+ } else if (check < -SK_MaxS32) {
+ check = SK_MinS32;
+ }
+ SkASSERT(result == (int32_t)check);
+
+ // make them <= 2^24, so we don't overflow in fixmul
+ numer = numer << 8 >> 8;
+ denom = denom << 8 >> 8;
+
+ result = SkFixedMul(numer, denom);
+ SkFixed r2 = symmetric_fixmul(numer, denom);
+// SkASSERT(result == r2);
+
+ result = SkFixedMul(numer, numer);
+ r2 = SkFixedSquare(numer);
+ SkASSERT(result == r2);
+
+#ifdef SK_CAN_USE_FLOAT
+ if (numer >= 0 && denom >= 0) {
+ SkFixed mean = SkFixedMean(numer, denom);
+ float fm = sk_float_sqrt(sk_float_abs(SkFixedToFloat(numer) * SkFixedToFloat(denom)));
+ SkFixed mean2 = SkFloatToFixed(fm);
+ int diff = SkAbs32(mean - mean2);
+ SkASSERT(diff <= 1);
+ }
+
+ {
+ SkFixed mod = SkFixedMod(numer, denom);
+ float n = SkFixedToFloat(numer);
+ float d = SkFixedToFloat(denom);
+ float m = sk_float_mod(n, d);
+#if 0
+ SkDebugf("%g mod %g = %g [%g]\n",
+ SkFixedToFloat(numer), SkFixedToFloat(denom),
+ SkFixedToFloat(mod), m);
+#endif
+ SkASSERT(mod == 0 || (mod < 0) == (m < 0)); // ensure the same sign
+ int diff = SkAbs32(mod - SkFloatToFixed(m));
+ SkASSERT((diff >> 7) == 0);
+ }
+#endif
+ }
+#endif
+
+#ifdef SK_CAN_USE_FLOAT
+ for (i = 0; i < 100000; i++) {
+ SkFract x = rand.nextU() >> 1;
+ double xx = (double)x / SK_Fract1;
+ SkFract xr = SkFractSqrt(x);
+ SkFract check = SkFloatToFract(sqrt(xx));
+ SkASSERT(xr == check || xr == check-1 || xr == check+1);
+
+ xr = SkFixedSqrt(x);
+ xx = (double)x / SK_Fixed1;
+ check = SkFloatToFixed(sqrt(xx));
+ SkASSERT(xr == check || xr == check-1);
+
+ xr = SkSqrt32(x);
+ xx = (double)x;
+ check = (int32_t)sqrt(xx);
+ SkASSERT(xr == check || xr == check-1);
+ }
+#endif
+
+#if !defined(SK_SCALAR_IS_FLOAT) && defined(SK_CAN_USE_FLOAT)
+ {
+ SkFixed s, c;
+ s = SkFixedSinCos(0, &c);
+ SkASSERT(s == 0);
+ SkASSERT(c == SK_Fixed1);
+ }
+
+ int maxDiff = 0;
+ for (i = 0; i < 10000; i++) {
+ SkFixed rads = rand.nextS() >> 10;
+ double frads = SkFixedToFloat(rads);
+
+ SkFixed s, c;
+ s = SkScalarSinCos(rads, &c);
+
+ double fs = sin(frads);
+ double fc = cos(frads);
+
+ SkFixed is = SkFloatToFixed(fs);
+ SkFixed ic = SkFloatToFixed(fc);
+
+ maxDiff = SkMax32(maxDiff, SkAbs32(is - s));
+ maxDiff = SkMax32(maxDiff, SkAbs32(ic - c));
+ }
+ SkDebugf("SinCos: maximum error = %d\n", maxDiff);
+#endif
+#endif
+}
+
+#endif