diff options
Diffstat (limited to 'src/gpu/gl/GrGpuGLShaders.cpp')
-rw-r--r-- | src/gpu/gl/GrGpuGLShaders.cpp | 1231 |
1 files changed, 1231 insertions, 0 deletions
diff --git a/src/gpu/gl/GrGpuGLShaders.cpp b/src/gpu/gl/GrGpuGLShaders.cpp new file mode 100644 index 0000000..db7e3a7 --- /dev/null +++ b/src/gpu/gl/GrGpuGLShaders.cpp @@ -0,0 +1,1231 @@ + +/* + * Copyright 2011 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + + +#include "../GrBinHashKey.h" +#include "GrGLProgram.h" +#include "GrGLSL.h" +#include "GrGpuGLShaders.h" +#include "../GrGpuVertex.h" +#include "GrNoncopyable.h" +#include "../GrStringBuilder.h" +#include "../GrRandom.h" + +#define SKIP_CACHE_CHECK true +#define GR_UINT32_MAX static_cast<uint32_t>(-1) + +#include "../GrTHashCache.h" + +class GrGpuGLShaders::ProgramCache : public ::GrNoncopyable { +private: + class Entry; + + typedef GrBinHashKey<Entry, GrGLProgram::kProgramKeySize> ProgramHashKey; + + class Entry : public ::GrNoncopyable { + public: + Entry() {} + void copyAndTakeOwnership(Entry& entry) { + fProgramData.copyAndTakeOwnership(entry.fProgramData); + fKey = entry.fKey; // ownership transfer + fLRUStamp = entry.fLRUStamp; + } + + public: + int compare(const ProgramHashKey& key) const { return fKey.compare(key); } + + public: + GrGLProgram::CachedData fProgramData; + ProgramHashKey fKey; + unsigned int fLRUStamp; + }; + + GrTHashTable<Entry, ProgramHashKey, 8> fHashCache; + + // We may have kMaxEntries+1 shaders in the GL context because + // we create a new shader before evicting from the cache. + enum { + kMaxEntries = 32 + }; + Entry fEntries[kMaxEntries]; + int fCount; + unsigned int fCurrLRUStamp; + const GrGLContextInfo& fGL; + +public: + ProgramCache(const GrGLContextInfo& gl) + : fCount(0) + , fCurrLRUStamp(0) + , fGL(gl) { + } + + ~ProgramCache() { + for (int i = 0; i < fCount; ++i) { + GrGpuGLShaders::DeleteProgram(fGL.interface(), + &fEntries[i].fProgramData); + } + } + + void abandon() { + fCount = 0; + } + + void invalidateViewMatrices() { + for (int i = 0; i < fCount; ++i) { + // set to illegal matrix + fEntries[i].fProgramData.fViewMatrix = GrMatrix::InvalidMatrix(); + } + } + + GrGLProgram::CachedData* getProgramData(const GrGLProgram& desc) { + Entry newEntry; + newEntry.fKey.setKeyData(desc.keyData()); + + Entry* entry = fHashCache.find(newEntry.fKey); + if (NULL == entry) { + if (!desc.genProgram(fGL, &newEntry.fProgramData)) { + return NULL; + } + if (fCount < kMaxEntries) { + entry = fEntries + fCount; + ++fCount; + } else { + GrAssert(kMaxEntries == fCount); + entry = fEntries; + for (int i = 1; i < kMaxEntries; ++i) { + if (fEntries[i].fLRUStamp < entry->fLRUStamp) { + entry = fEntries + i; + } + } + fHashCache.remove(entry->fKey, entry); + GrGpuGLShaders::DeleteProgram(fGL.interface(), + &entry->fProgramData); + } + entry->copyAndTakeOwnership(newEntry); + fHashCache.insert(entry->fKey, entry); + } + + entry->fLRUStamp = fCurrLRUStamp; + if (GR_UINT32_MAX == fCurrLRUStamp) { + // wrap around! just trash our LRU, one time hit. + for (int i = 0; i < fCount; ++i) { + fEntries[i].fLRUStamp = 0; + } + } + ++fCurrLRUStamp; + return &entry->fProgramData; + } +}; + +void GrGpuGLShaders::abandonResources(){ + INHERITED::abandonResources(); + fProgramCache->abandon(); +} + +void GrGpuGLShaders::DeleteProgram(const GrGLInterface* gl, + CachedData* programData) { + GR_GL_CALL(gl, DeleteShader(programData->fVShaderID)); + if (programData->fGShaderID) { + GR_GL_CALL(gl, DeleteShader(programData->fGShaderID)); + } + GR_GL_CALL(gl, DeleteShader(programData->fFShaderID)); + GR_GL_CALL(gl, DeleteProgram(programData->fProgramID)); + GR_DEBUGCODE(memset(programData, 0, sizeof(*programData));) +} + +//////////////////////////////////////////////////////////////////////////////// + +#define GL_CALL(X) GR_GL_CALL(this->glInterface(), X) + +namespace { + +// GrRandoms nextU() values have patterns in the low bits +// So using nextU() % array_count might never take some values. +int random_int(GrRandom* r, int count) { + return (int)(r->nextF() * count); +} + +// min is inclusive, max is exclusive +int random_int(GrRandom* r, int min, int max) { + return (int)(r->nextF() * (max-min)) + min; +} + +bool random_bool(GrRandom* r) { + return r->nextF() > .5f; +} + +} + +bool GrGpuGLShaders::programUnitTest() { + + GrGLSLGeneration glslGeneration = + GrGetGLSLGeneration(this->glBinding(), this->glInterface()); + static const int STAGE_OPTS[] = { + 0, + StageDesc::kNoPerspective_OptFlagBit, + StageDesc::kIdentity_CoordMapping + }; + static const int IN_CONFIG_FLAGS[] = { + StageDesc::kNone_InConfigFlag, + StageDesc::kSwapRAndB_InConfigFlag, + StageDesc::kSwapRAndB_InConfigFlag | + StageDesc::kMulRGBByAlpha_RoundUp_InConfigFlag, + StageDesc::kMulRGBByAlpha_RoundDown_InConfigFlag, + StageDesc::kSmearAlpha_InConfigFlag, + }; + GrGLProgram program; + ProgramDesc& pdesc = program.fProgramDesc; + + static const int NUM_TESTS = 512; + + GrRandom random; + for (int t = 0; t < NUM_TESTS; ++t) { + +#if 0 + GrPrintf("\nTest Program %d\n-------------\n", t); + static const int stop = -1; + if (t == stop) { + int breakpointhere = 9; + } +#endif + + pdesc.fVertexLayout = 0; + pdesc.fEmitsPointSize = random.nextF() > .5f; + pdesc.fColorInput = random_int(&random, ProgramDesc::kColorInputCnt); + pdesc.fCoverageInput = random_int(&random, ProgramDesc::kColorInputCnt); + + pdesc.fColorFilterXfermode = random_int(&random, SkXfermode::kCoeffModesCnt); + + pdesc.fFirstCoverageStage = random_int(&random, GrDrawState::kNumStages); + + pdesc.fVertexLayout |= random_bool(&random) ? + GrDrawTarget::kCoverage_VertexLayoutBit : + 0; + +#if GR_GL_EXPERIMENTAL_GS + pdesc.fExperimentalGS = this->getCaps().fGeometryShaderSupport && + random_bool(&random); +#endif + pdesc.fOutputConfig = random_int(&random, ProgramDesc::kOutputConfigCnt); + + bool edgeAA = random_bool(&random); + if (edgeAA) { + bool vertexEdgeAA = random_bool(&random); + if (vertexEdgeAA) { + pdesc.fVertexLayout |= GrDrawTarget::kEdge_VertexLayoutBit; + if (this->getCaps().fShaderDerivativeSupport) { + pdesc.fVertexEdgeType = (GrDrawState::VertexEdgeType) random_int(&random, GrDrawState::kVertexEdgeTypeCnt); + } else { + pdesc.fVertexEdgeType = GrDrawState::kHairLine_EdgeType; + } + pdesc.fEdgeAANumEdges = 0; + } else { + pdesc.fEdgeAANumEdges = random_int(&random, 1, this->getMaxEdges()); + pdesc.fEdgeAAConcave = random_bool(&random); + } + } else { + pdesc.fEdgeAANumEdges = 0; + } + + pdesc.fColorMatrixEnabled = random_bool(&random); + + if (this->getCaps().fDualSourceBlendingSupport) { + pdesc.fDualSrcOutput = random_int(&random, ProgramDesc::kDualSrcOutputCnt); + } else { + pdesc.fDualSrcOutput = ProgramDesc::kNone_DualSrcOutput; + } + + for (int s = 0; s < GrDrawState::kNumStages; ++s) { + // enable the stage? + if (random_bool(&random)) { + // use separate tex coords? + if (random_bool(&random)) { + int t = random_int(&random, GrDrawState::kMaxTexCoords); + pdesc.fVertexLayout |= StageTexCoordVertexLayoutBit(s, t); + } else { + pdesc.fVertexLayout |= StagePosAsTexCoordVertexLayoutBit(s); + } + } + // use text-formatted verts? + if (random_bool(&random)) { + pdesc.fVertexLayout |= kTextFormat_VertexLayoutBit; + } + StageDesc& stage = pdesc.fStages[s]; + stage.fOptFlags = STAGE_OPTS[random_int(&random, GR_ARRAY_COUNT(STAGE_OPTS))]; + stage.fInConfigFlags = IN_CONFIG_FLAGS[random_int(&random, GR_ARRAY_COUNT(IN_CONFIG_FLAGS))]; + stage.fCoordMapping = random_int(&random, StageDesc::kCoordMappingCnt); + stage.fFetchMode = random_int(&random, StageDesc::kFetchModeCnt); + // convolution shaders don't work with persp tex matrix + if (stage.fFetchMode == StageDesc::kConvolution_FetchMode || + stage.fFetchMode == StageDesc::kDilate_FetchMode || + stage.fFetchMode == StageDesc::kErode_FetchMode) { + stage.fOptFlags |= StageDesc::kNoPerspective_OptFlagBit; + } + stage.setEnabled(VertexUsesStage(s, pdesc.fVertexLayout)); + static const uint32_t kMulByAlphaMask = + StageDesc::kMulRGBByAlpha_RoundUp_InConfigFlag | + StageDesc::kMulRGBByAlpha_RoundDown_InConfigFlag; + switch (stage.fFetchMode) { + case StageDesc::kSingle_FetchMode: + stage.fKernelWidth = 0; + break; + case StageDesc::kConvolution_FetchMode: + case StageDesc::kDilate_FetchMode: + case StageDesc::kErode_FetchMode: + stage.fKernelWidth = random_int(&random, 2, 8); + stage.fInConfigFlags &= ~kMulByAlphaMask; + break; + case StageDesc::k2x2_FetchMode: + stage.fKernelWidth = 0; + stage.fInConfigFlags &= ~kMulByAlphaMask; + break; + } + } + CachedData cachedData; + if (!program.genProgram(this->glContextInfo(), &cachedData)) { + return false; + } + DeleteProgram(this->glInterface(), &cachedData); + } + return true; +} + +GrGpuGLShaders::GrGpuGLShaders(const GrGLContextInfo& ctxInfo) + : GrGpuGL(ctxInfo) { + + // Enable supported shader-related caps + if (kDesktop_GrGLBinding == this->glBinding()) { + fCaps.fDualSourceBlendingSupport = + this->glVersion() >= GR_GL_VER(3,3) || + this->hasExtension("GL_ARB_blend_func_extended"); + fCaps.fShaderDerivativeSupport = true; + // we don't support GL_ARB_geometry_shader4, just GL 3.2+ GS + fCaps.fGeometryShaderSupport = + this->glVersion() >= GR_GL_VER(3,2) && + this->glslGeneration() >= k150_GrGLSLGeneration; + } else { + fCaps.fShaderDerivativeSupport = + this->hasExtension("GL_OES_standard_derivatives"); + } + + GR_GL_GetIntegerv(this->glInterface(), + GR_GL_MAX_VERTEX_ATTRIBS, + &fMaxVertexAttribs); + + fProgramData = NULL; + fProgramCache = new ProgramCache(this->glContextInfo()); + +#if 0 + this->programUnitTest(); +#endif +} + +GrGpuGLShaders::~GrGpuGLShaders() { + delete fProgramCache; +} + +const GrMatrix& GrGpuGLShaders::getHWViewMatrix() { + GrAssert(fProgramData); + + if (GrGLProgram::kSetAsAttribute == + fProgramData->fUniLocations.fViewMatrixUni) { + return fHWDrawState.getViewMatrix(); + } else { + return fProgramData->fViewMatrix; + } +} + +void GrGpuGLShaders::recordHWViewMatrix(const GrMatrix& matrix) { + GrAssert(fProgramData); + if (GrGLProgram::kSetAsAttribute == + fProgramData->fUniLocations.fViewMatrixUni) { + fHWDrawState.setViewMatrix(matrix); + } else { + fProgramData->fViewMatrix = matrix; + } +} + +const GrMatrix& GrGpuGLShaders::getHWSamplerMatrix(int stage) { + GrAssert(fProgramData); + + if (GrGLProgram::kSetAsAttribute == + fProgramData->fUniLocations.fStages[stage].fTextureMatrixUni) { + return fHWDrawState.getSampler(stage).getMatrix(); + } else { + return fProgramData->fTextureMatrices[stage]; + } +} + +void GrGpuGLShaders::recordHWSamplerMatrix(int stage, const GrMatrix& matrix) { + GrAssert(fProgramData); + if (GrGLProgram::kSetAsAttribute == + fProgramData->fUniLocations.fStages[stage].fTextureMatrixUni) { + *fHWDrawState.sampler(stage)->matrix() = matrix; + } else { + fProgramData->fTextureMatrices[stage] = matrix; + } +} + +void GrGpuGLShaders::onResetContext() { + INHERITED::onResetContext(); + + fHWGeometryState.fVertexOffset = ~0; + + // Third party GL code may have left vertex attributes enabled. Some GL + // implementations (osmesa) may read vetex attributes that are not required + // by the current shader. Therefore, we have to ensure that only the + // attributes we require for the current draw are enabled or we may cause an + // invalid read. + + // Disable all vertex layout bits so that next flush will assume all + // optional vertex attributes are disabled. + fHWGeometryState.fVertexLayout = 0; + + // We always use the this attribute and assume it is always enabled. + int posAttrIdx = GrGLProgram::PositionAttributeIdx(); + GL_CALL(EnableVertexAttribArray(posAttrIdx)); + // Disable all other vertex attributes. + for (int va = 0; va < fMaxVertexAttribs; ++va) { + if (va != posAttrIdx) { + GL_CALL(DisableVertexAttribArray(va)); + } + } + + fHWProgramID = 0; +} + +void GrGpuGLShaders::flushViewMatrix() { + const GrMatrix& vm = this->getDrawState().getViewMatrix(); + if (GrGpuGLShaders::getHWViewMatrix() != vm) { + + const GrRenderTarget* rt = this->getDrawState().getRenderTarget(); + GrAssert(NULL != rt); + GrMatrix m; + m.setAll( + GrIntToScalar(2) / rt->width(), 0, -GR_Scalar1, + 0,-GrIntToScalar(2) / rt->height(), GR_Scalar1, + 0, 0, GrMatrix::I()[8]); + m.setConcat(m, vm); + + // ES doesn't allow you to pass true to the transpose param, + // so do our own transpose + GrGLfloat mt[] = { + GrScalarToFloat(m[GrMatrix::kMScaleX]), + GrScalarToFloat(m[GrMatrix::kMSkewY]), + GrScalarToFloat(m[GrMatrix::kMPersp0]), + GrScalarToFloat(m[GrMatrix::kMSkewX]), + GrScalarToFloat(m[GrMatrix::kMScaleY]), + GrScalarToFloat(m[GrMatrix::kMPersp1]), + GrScalarToFloat(m[GrMatrix::kMTransX]), + GrScalarToFloat(m[GrMatrix::kMTransY]), + GrScalarToFloat(m[GrMatrix::kMPersp2]) + }; + + if (GrGLProgram::kSetAsAttribute == + fProgramData->fUniLocations.fViewMatrixUni) { + int baseIdx = GrGLProgram::ViewMatrixAttributeIdx(); + GL_CALL(VertexAttrib4fv(baseIdx + 0, mt+0)); + GL_CALL(VertexAttrib4fv(baseIdx + 1, mt+3)); + GL_CALL(VertexAttrib4fv(baseIdx + 2, mt+6)); + } else { + GrAssert(GrGLProgram::kUnusedUniform != + fProgramData->fUniLocations.fViewMatrixUni); + GL_CALL(UniformMatrix3fv(fProgramData->fUniLocations.fViewMatrixUni, + 1, false, mt)); + } + this->recordHWViewMatrix(vm); + } +} + +void GrGpuGLShaders::flushTextureDomain(int s) { + const GrGLint& uni = fProgramData->fUniLocations.fStages[s].fTexDomUni; + const GrDrawState& drawState = this->getDrawState(); + if (GrGLProgram::kUnusedUniform != uni) { + const GrRect &texDom = drawState.getSampler(s).getTextureDomain(); + + if (((1 << s) & fDirtyFlags.fTextureChangedMask) || + fProgramData->fTextureDomain[s] != texDom) { + + fProgramData->fTextureDomain[s] = texDom; + + float values[4] = { + GrScalarToFloat(texDom.left()), + GrScalarToFloat(texDom.top()), + GrScalarToFloat(texDom.right()), + GrScalarToFloat(texDom.bottom()) + }; + + const GrGLTexture* texture = + static_cast<const GrGLTexture*>(drawState.getTexture(s)); + GrGLTexture::Orientation orientation = texture->orientation(); + + // vertical flip if necessary + if (GrGLTexture::kBottomUp_Orientation == orientation) { + values[1] = 1.0f - values[1]; + values[3] = 1.0f - values[3]; + // The top and bottom were just flipped, so correct the ordering + // of elements so that values = (l, t, r, b). + SkTSwap(values[1], values[3]); + } + + GL_CALL(Uniform4fv(uni, 1, values)); + } + } +} + +void GrGpuGLShaders::flushTextureMatrix(int s) { + const GrGLint& uni = fProgramData->fUniLocations.fStages[s].fTextureMatrixUni; + const GrDrawState& drawState = this->getDrawState(); + const GrGLTexture* texture = + static_cast<const GrGLTexture*>(drawState.getTexture(s)); + if (NULL != texture) { + if (GrGLProgram::kUnusedUniform != uni && + (((1 << s) & fDirtyFlags.fTextureChangedMask) || + this->getHWSamplerMatrix(s) != drawState.getSampler(s).getMatrix())) { + + GrMatrix m = drawState.getSampler(s).getMatrix(); + GrSamplerState::SampleMode mode = + drawState.getSampler(s).getSampleMode(); + AdjustTextureMatrix(texture, mode, &m); + + // ES doesn't allow you to pass true to the transpose param, + // so do our own transpose + GrGLfloat mt[] = { + GrScalarToFloat(m[GrMatrix::kMScaleX]), + GrScalarToFloat(m[GrMatrix::kMSkewY]), + GrScalarToFloat(m[GrMatrix::kMPersp0]), + GrScalarToFloat(m[GrMatrix::kMSkewX]), + GrScalarToFloat(m[GrMatrix::kMScaleY]), + GrScalarToFloat(m[GrMatrix::kMPersp1]), + GrScalarToFloat(m[GrMatrix::kMTransX]), + GrScalarToFloat(m[GrMatrix::kMTransY]), + GrScalarToFloat(m[GrMatrix::kMPersp2]) + }; + + if (GrGLProgram::kSetAsAttribute == + fProgramData->fUniLocations.fStages[s].fTextureMatrixUni) { + int baseIdx = GrGLProgram::TextureMatrixAttributeIdx(s); + GL_CALL(VertexAttrib4fv(baseIdx + 0, mt+0)); + GL_CALL(VertexAttrib4fv(baseIdx + 1, mt+3)); + GL_CALL(VertexAttrib4fv(baseIdx + 2, mt+6)); + } else { + GL_CALL(UniformMatrix3fv(uni, 1, false, mt)); + } + this->recordHWSamplerMatrix(s, drawState.getSampler(s).getMatrix()); + } + } +} + +void GrGpuGLShaders::flushRadial2(int s) { + + const int &uni = fProgramData->fUniLocations.fStages[s].fRadial2Uni; + const GrSamplerState& sampler = this->getDrawState().getSampler(s); + if (GrGLProgram::kUnusedUniform != uni && + (fProgramData->fRadial2CenterX1[s] != sampler.getRadial2CenterX1() || + fProgramData->fRadial2Radius0[s] != sampler.getRadial2Radius0() || + fProgramData->fRadial2PosRoot[s] != sampler.isRadial2PosRoot())) { + + GrScalar centerX1 = sampler.getRadial2CenterX1(); + GrScalar radius0 = sampler.getRadial2Radius0(); + + GrScalar a = GrMul(centerX1, centerX1) - GR_Scalar1; + + // when were in the degenerate (linear) case the second + // value will be INF but the program doesn't read it. (We + // use the same 6 uniforms even though we don't need them + // all in the linear case just to keep the code complexity + // down). + float values[6] = { + GrScalarToFloat(a), + 1 / (2.f * GrScalarToFloat(a)), + GrScalarToFloat(centerX1), + GrScalarToFloat(radius0), + GrScalarToFloat(GrMul(radius0, radius0)), + sampler.isRadial2PosRoot() ? 1.f : -1.f + }; + GL_CALL(Uniform1fv(uni, 6, values)); + fProgramData->fRadial2CenterX1[s] = sampler.getRadial2CenterX1(); + fProgramData->fRadial2Radius0[s] = sampler.getRadial2Radius0(); + fProgramData->fRadial2PosRoot[s] = sampler.isRadial2PosRoot(); + } +} + +void GrGpuGLShaders::flushConvolution(int s) { + const GrSamplerState& sampler = this->getDrawState().getSampler(s); + int kernelUni = fProgramData->fUniLocations.fStages[s].fKernelUni; + if (GrGLProgram::kUnusedUniform != kernelUni) { + GL_CALL(Uniform1fv(kernelUni, sampler.getKernelWidth(), + sampler.getKernel())); + } + int imageIncrementUni = fProgramData->fUniLocations.fStages[s].fImageIncrementUni; + if (GrGLProgram::kUnusedUniform != imageIncrementUni) { + const GrGLTexture* texture = + static_cast<const GrGLTexture*>(this->getDrawState().getTexture(s)); + float imageIncrement[2] = { 0 }; + switch (sampler.getFilterDirection()) { + case GrSamplerState::kX_FilterDirection: + imageIncrement[0] = 1.0f / texture->width(); + break; + case GrSamplerState::kY_FilterDirection: + imageIncrement[1] = 1.0f / texture->height(); + break; + default: + GrCrash("Unknown filter direction."); + } + GL_CALL(Uniform2fv(imageIncrementUni, 1, imageIncrement)); + } +} + +void GrGpuGLShaders::flushTexelSize(int s) { + const int& uni = fProgramData->fUniLocations.fStages[s].fNormalizedTexelSizeUni; + if (GrGLProgram::kUnusedUniform != uni) { + const GrGLTexture* texture = + static_cast<const GrGLTexture*>(this->getDrawState().getTexture(s)); + if (texture->width() != fProgramData->fTextureWidth[s] || + texture->height() != fProgramData->fTextureHeight[s]) { + + float texelSize[] = {1.f / texture->width(), + 1.f / texture->height()}; + GL_CALL(Uniform2fv(uni, 1, texelSize)); + fProgramData->fTextureWidth[s] = texture->width(); + fProgramData->fTextureHeight[s] = texture->height(); + } + } +} + +void GrGpuGLShaders::flushEdgeAAData() { + const int& uni = fProgramData->fUniLocations.fEdgesUni; + if (GrGLProgram::kUnusedUniform != uni) { + int count = this->getDrawState().getNumAAEdges(); + GrDrawState::Edge edges[GrDrawState::kMaxEdges]; + // Flip the edges in Y + float height = + static_cast<float>(this->getDrawState().getRenderTarget()->height()); + for (int i = 0; i < count; ++i) { + edges[i] = this->getDrawState().getAAEdges()[i]; + float b = edges[i].fY; + edges[i].fY = -b; + edges[i].fZ += b * height; + } + GL_CALL(Uniform3fv(uni, count, &edges[0].fX)); + } +} + +void GrGpuGLShaders::flushColorMatrix() { + const ProgramDesc& desc = fCurrentProgram.getDesc(); + int matrixUni = fProgramData->fUniLocations.fColorMatrixUni; + int vecUni = fProgramData->fUniLocations.fColorMatrixVecUni; + if (GrGLProgram::kUnusedUniform != matrixUni + && GrGLProgram::kUnusedUniform != vecUni) { + const float* m = this->getDrawState().getColorMatrix(); + GrGLfloat mt[] = { + m[0], m[5], m[10], m[15], + m[1], m[6], m[11], m[16], + m[2], m[7], m[12], m[17], + m[3], m[8], m[13], m[18], + }; + static float scale = 1.0f / 255.0f; + GrGLfloat vec[] = { + m[4] * scale, m[9] * scale, m[14] * scale, m[19] * scale, + }; + GL_CALL(UniformMatrix4fv(matrixUni, 1, false, mt)); + GL_CALL(Uniform4fv(vecUni, 1, vec)); + } +} + +static const float ONE_OVER_255 = 1.f / 255.f; + +#define GR_COLOR_TO_VEC4(color) {\ + GrColorUnpackR(color) * ONE_OVER_255,\ + GrColorUnpackG(color) * ONE_OVER_255,\ + GrColorUnpackB(color) * ONE_OVER_255,\ + GrColorUnpackA(color) * ONE_OVER_255 \ +} + +void GrGpuGLShaders::flushColor(GrColor color) { + const ProgramDesc& desc = fCurrentProgram.getDesc(); + const GrDrawState& drawState = this->getDrawState(); + + if (this->getGeomSrc().fVertexLayout & kColor_VertexLayoutBit) { + // color will be specified per-vertex as an attribute + // invalidate the const vertex attrib color + fHWDrawState.setColor(GrColor_ILLEGAL); + } else { + switch (desc.fColorInput) { + case ProgramDesc::kAttribute_ColorInput: + if (fHWDrawState.getColor() != color) { + // OpenGL ES only supports the float varieties of + // glVertexAttrib + float c[] = GR_COLOR_TO_VEC4(color); + GL_CALL(VertexAttrib4fv(GrGLProgram::ColorAttributeIdx(), + c)); + fHWDrawState.setColor(color); + } + break; + case ProgramDesc::kUniform_ColorInput: + if (fProgramData->fColor != color) { + // OpenGL ES doesn't support unsigned byte varieties of + // glUniform + float c[] = GR_COLOR_TO_VEC4(color); + GrAssert(GrGLProgram::kUnusedUniform != + fProgramData->fUniLocations.fColorUni); + GL_CALL(Uniform4fv(fProgramData->fUniLocations.fColorUni, + 1, c)); + fProgramData->fColor = color; + } + break; + case ProgramDesc::kSolidWhite_ColorInput: + case ProgramDesc::kTransBlack_ColorInput: + break; + default: + GrCrash("Unknown color type."); + } + } + if (fProgramData->fUniLocations.fColorFilterUni + != GrGLProgram::kUnusedUniform + && fProgramData->fColorFilterColor + != drawState.getColorFilterColor()) { + float c[] = GR_COLOR_TO_VEC4(drawState.getColorFilterColor()); + GL_CALL(Uniform4fv(fProgramData->fUniLocations.fColorFilterUni, 1, c)); + fProgramData->fColorFilterColor = drawState.getColorFilterColor(); + } +} + +void GrGpuGLShaders::flushCoverage(GrColor coverage) { + const ProgramDesc& desc = fCurrentProgram.getDesc(); + const GrDrawState& drawState = this->getDrawState(); + + + if (this->getGeomSrc().fVertexLayout & kCoverage_VertexLayoutBit) { + // coverage will be specified per-vertex as an attribute + // invalidate the const vertex attrib coverage + fHWDrawState.setCoverage4(GrColor_ILLEGAL); + } else { + switch (desc.fCoverageInput) { + case ProgramDesc::kAttribute_ColorInput: + if (fHWDrawState.getCoverage() != coverage) { + // OpenGL ES only supports the float varieties of + // glVertexAttrib + float c[] = GR_COLOR_TO_VEC4(coverage); + GL_CALL(VertexAttrib4fv(GrGLProgram::CoverageAttributeIdx(), + c)); + fHWDrawState.setCoverage(coverage); + } + break; + case ProgramDesc::kUniform_ColorInput: + if (fProgramData->fCoverage != coverage) { + // OpenGL ES doesn't support unsigned byte varieties of + // glUniform + float c[] = GR_COLOR_TO_VEC4(coverage); + GrAssert(GrGLProgram::kUnusedUniform != + fProgramData->fUniLocations.fCoverageUni); + GL_CALL(Uniform4fv(fProgramData->fUniLocations.fCoverageUni, + 1, c)); + fProgramData->fCoverage = coverage; + } + break; + case ProgramDesc::kSolidWhite_ColorInput: + case ProgramDesc::kTransBlack_ColorInput: + break; + default: + GrCrash("Unknown coverage type."); + } + } +} + +bool GrGpuGLShaders::flushGraphicsState(GrPrimitiveType type) { + if (!flushGLStateCommon(type)) { + return false; + } + + const GrDrawState& drawState = this->getDrawState(); + + if (fDirtyFlags.fRenderTargetChanged) { + // our coords are in pixel space and the GL matrices map to NDC + // so if the viewport changed, our matrix is now wrong. + fHWDrawState.setViewMatrix(GrMatrix::InvalidMatrix()); + // we assume all shader matrices may be wrong after viewport changes + fProgramCache->invalidateViewMatrices(); + } + + GrBlendCoeff srcCoeff; + GrBlendCoeff dstCoeff; + BlendOptFlags blendOpts = this->getBlendOpts(false, &srcCoeff, &dstCoeff); + if (kSkipDraw_BlendOptFlag & blendOpts) { + return false; + } + + this->buildProgram(type, blendOpts, dstCoeff); + fProgramData = fProgramCache->getProgramData(fCurrentProgram); + if (NULL == fProgramData) { + GrAssert(!"Failed to create program!"); + return false; + } + + if (fHWProgramID != fProgramData->fProgramID) { + GL_CALL(UseProgram(fProgramData->fProgramID)); + fHWProgramID = fProgramData->fProgramID; + } + fCurrentProgram.overrideBlend(&srcCoeff, &dstCoeff); + this->flushBlend(type, srcCoeff, dstCoeff); + + GrColor color; + GrColor coverage; + if (blendOpts & kEmitTransBlack_BlendOptFlag) { + color = 0; + coverage = 0; + } else if (blendOpts & kEmitCoverage_BlendOptFlag) { + color = 0xffffffff; + coverage = drawState.getCoverage(); + } else { + color = drawState.getColor(); + coverage = drawState.getCoverage(); + } + this->flushColor(color); + this->flushCoverage(coverage); + + this->flushViewMatrix(); + + for (int s = 0; s < GrDrawState::kNumStages; ++s) { + if (this->isStageEnabled(s)) { + this->flushTextureMatrix(s); + + this->flushRadial2(s); + + this->flushConvolution(s); + + this->flushTexelSize(s); + + this->flushTextureDomain(s); + } + } + this->flushEdgeAAData(); + this->flushColorMatrix(); + resetDirtyFlags(); + return true; +} + +void GrGpuGLShaders::postDraw() { +} + +void GrGpuGLShaders::setupGeometry(int* startVertex, + int* startIndex, + int vertexCount, + int indexCount) { + + int newColorOffset; + int newCoverageOffset; + int newTexCoordOffsets[GrDrawState::kMaxTexCoords]; + int newEdgeOffset; + + GrGLsizei newStride = VertexSizeAndOffsetsByIdx( + this->getGeomSrc().fVertexLayout, + newTexCoordOffsets, + &newColorOffset, + &newCoverageOffset, + &newEdgeOffset); + int oldColorOffset; + int oldCoverageOffset; + int oldTexCoordOffsets[GrDrawState::kMaxTexCoords]; + int oldEdgeOffset; + + GrGLsizei oldStride = VertexSizeAndOffsetsByIdx( + fHWGeometryState.fVertexLayout, + oldTexCoordOffsets, + &oldColorOffset, + &oldCoverageOffset, + &oldEdgeOffset); + bool indexed = NULL != startIndex; + + int extraVertexOffset; + int extraIndexOffset; + this->setBuffers(indexed, &extraVertexOffset, &extraIndexOffset); + + GrGLenum scalarType; + bool texCoordNorm; + if (this->getGeomSrc().fVertexLayout & kTextFormat_VertexLayoutBit) { + scalarType = GrGLTextType; + texCoordNorm = GR_GL_TEXT_TEXTURE_NORMALIZED; + } else { + scalarType = GrGLType; + texCoordNorm = false; + } + + size_t vertexOffset = (*startVertex + extraVertexOffset) * newStride; + *startVertex = 0; + if (indexed) { + *startIndex += extraIndexOffset; + } + + // all the Pointers must be set if any of these are true + bool allOffsetsChange = fHWGeometryState.fArrayPtrsDirty || + vertexOffset != fHWGeometryState.fVertexOffset || + newStride != oldStride; + + // position and tex coord offsets change if above conditions are true + // or the type/normalization changed based on text vs nontext type coords. + bool posAndTexChange = allOffsetsChange || + (((GrGLTextType != GrGLType) || GR_GL_TEXT_TEXTURE_NORMALIZED) && + (kTextFormat_VertexLayoutBit & + (fHWGeometryState.fVertexLayout ^ + this->getGeomSrc().fVertexLayout))); + + if (posAndTexChange) { + int idx = GrGLProgram::PositionAttributeIdx(); + GL_CALL(VertexAttribPointer(idx, 2, scalarType, false, newStride, + (GrGLvoid*)vertexOffset)); + fHWGeometryState.fVertexOffset = vertexOffset; + } + + for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) { + if (newTexCoordOffsets[t] > 0) { + GrGLvoid* texCoordOffset = (GrGLvoid*)(vertexOffset + newTexCoordOffsets[t]); + int idx = GrGLProgram::TexCoordAttributeIdx(t); + if (oldTexCoordOffsets[t] <= 0) { + GL_CALL(EnableVertexAttribArray(idx)); + GL_CALL(VertexAttribPointer(idx, 2, scalarType, texCoordNorm, + newStride, texCoordOffset)); + } else if (posAndTexChange || + newTexCoordOffsets[t] != oldTexCoordOffsets[t]) { + GL_CALL(VertexAttribPointer(idx, 2, scalarType, texCoordNorm, + newStride, texCoordOffset)); + } + } else if (oldTexCoordOffsets[t] > 0) { + GL_CALL(DisableVertexAttribArray(GrGLProgram::TexCoordAttributeIdx(t))); + } + } + + if (newColorOffset > 0) { + GrGLvoid* colorOffset = (int8_t*)(vertexOffset + newColorOffset); + int idx = GrGLProgram::ColorAttributeIdx(); + if (oldColorOffset <= 0) { + GL_CALL(EnableVertexAttribArray(idx)); + GL_CALL(VertexAttribPointer(idx, 4, GR_GL_UNSIGNED_BYTE, + true, newStride, colorOffset)); + } else if (allOffsetsChange || newColorOffset != oldColorOffset) { + GL_CALL(VertexAttribPointer(idx, 4, GR_GL_UNSIGNED_BYTE, + true, newStride, colorOffset)); + } + } else if (oldColorOffset > 0) { + GL_CALL(DisableVertexAttribArray(GrGLProgram::ColorAttributeIdx())); + } + + if (newCoverageOffset > 0) { + GrGLvoid* coverageOffset = (int8_t*)(vertexOffset + newCoverageOffset); + int idx = GrGLProgram::CoverageAttributeIdx(); + if (oldCoverageOffset <= 0) { + GL_CALL(EnableVertexAttribArray(idx)); + GL_CALL(VertexAttribPointer(idx, 4, GR_GL_UNSIGNED_BYTE, + true, newStride, coverageOffset)); + } else if (allOffsetsChange || newCoverageOffset != oldCoverageOffset) { + GL_CALL(VertexAttribPointer(idx, 4, GR_GL_UNSIGNED_BYTE, + true, newStride, coverageOffset)); + } + } else if (oldCoverageOffset > 0) { + GL_CALL(DisableVertexAttribArray(GrGLProgram::CoverageAttributeIdx())); + } + + if (newEdgeOffset > 0) { + GrGLvoid* edgeOffset = (int8_t*)(vertexOffset + newEdgeOffset); + int idx = GrGLProgram::EdgeAttributeIdx(); + if (oldEdgeOffset <= 0) { + GL_CALL(EnableVertexAttribArray(idx)); + GL_CALL(VertexAttribPointer(idx, 4, scalarType, + false, newStride, edgeOffset)); + } else if (allOffsetsChange || newEdgeOffset != oldEdgeOffset) { + GL_CALL(VertexAttribPointer(idx, 4, scalarType, + false, newStride, edgeOffset)); + } + } else if (oldEdgeOffset > 0) { + GL_CALL(DisableVertexAttribArray(GrGLProgram::EdgeAttributeIdx())); + } + + fHWGeometryState.fVertexLayout = this->getGeomSrc().fVertexLayout; + fHWGeometryState.fArrayPtrsDirty = false; +} + +void GrGpuGLShaders::buildProgram(GrPrimitiveType type, + BlendOptFlags blendOpts, + GrBlendCoeff dstCoeff) { + ProgramDesc& desc = fCurrentProgram.fProgramDesc; + const GrDrawState& drawState = this->getDrawState(); + + // This should already have been caught + GrAssert(!(kSkipDraw_BlendOptFlag & blendOpts)); + + bool skipCoverage = SkToBool(blendOpts & kEmitTransBlack_BlendOptFlag); + + bool skipColor = SkToBool(blendOpts & (kEmitTransBlack_BlendOptFlag | + kEmitCoverage_BlendOptFlag)); + + // The descriptor is used as a cache key. Thus when a field of the + // descriptor will not affect program generation (because of the vertex + // layout in use or other descriptor field settings) it should be set + // to a canonical value to avoid duplicate programs with different keys. + + // Must initialize all fields or cache will have false negatives! + desc.fVertexLayout = this->getGeomSrc().fVertexLayout; + + desc.fEmitsPointSize = kPoints_PrimitiveType == type; + + bool requiresAttributeColors = + !skipColor && SkToBool(desc.fVertexLayout & kColor_VertexLayoutBit); + bool requiresAttributeCoverage = + !skipCoverage && SkToBool(desc.fVertexLayout & + kCoverage_VertexLayoutBit); + + // fColorInput/fCoverageInput records how colors are specified for the. + // program. So we strip the bits from the layout to avoid false negatives + // when searching for an existing program in the cache. + desc.fVertexLayout &= ~(kColor_VertexLayoutBit | kCoverage_VertexLayoutBit); + + desc.fColorFilterXfermode = skipColor ? + SkXfermode::kDst_Mode : + drawState.getColorFilterMode(); + + desc.fColorMatrixEnabled = drawState.isStateFlagEnabled(GrDrawState::kColorMatrix_StateBit); + + // no reason to do edge aa or look at per-vertex coverage if coverage is + // ignored + if (skipCoverage) { + desc.fVertexLayout &= ~(kEdge_VertexLayoutBit | + kCoverage_VertexLayoutBit); + } + + bool colorIsTransBlack = SkToBool(blendOpts & kEmitTransBlack_BlendOptFlag); + bool colorIsSolidWhite = (blendOpts & kEmitCoverage_BlendOptFlag) || + (!requiresAttributeColors && + 0xffffffff == drawState.getColor()); + if (GR_AGGRESSIVE_SHADER_OPTS && colorIsTransBlack) { + desc.fColorInput = ProgramDesc::kTransBlack_ColorInput; + } else if (GR_AGGRESSIVE_SHADER_OPTS && colorIsSolidWhite) { + desc.fColorInput = ProgramDesc::kSolidWhite_ColorInput; + } else if (GR_GL_NO_CONSTANT_ATTRIBUTES && !requiresAttributeColors) { + desc.fColorInput = ProgramDesc::kUniform_ColorInput; + } else { + desc.fColorInput = ProgramDesc::kAttribute_ColorInput; + } + + bool covIsSolidWhite = !requiresAttributeCoverage && + 0xffffffff == drawState.getCoverage(); + + if (skipCoverage) { + desc.fCoverageInput = ProgramDesc::kTransBlack_ColorInput; + } else if (covIsSolidWhite) { + desc.fCoverageInput = ProgramDesc::kSolidWhite_ColorInput; + } else if (GR_GL_NO_CONSTANT_ATTRIBUTES && !requiresAttributeCoverage) { + desc.fCoverageInput = ProgramDesc::kUniform_ColorInput; + } else { + desc.fCoverageInput = ProgramDesc::kAttribute_ColorInput; + } + + desc.fEdgeAANumEdges = skipCoverage ? 0 : drawState.getNumAAEdges(); + desc.fEdgeAAConcave = desc.fEdgeAANumEdges > 0 && + drawState.isConcaveEdgeAAState(); + + int lastEnabledStage = -1; + + if (!skipCoverage && (desc.fVertexLayout & + GrDrawTarget::kEdge_VertexLayoutBit)) { + desc.fVertexEdgeType = drawState.getVertexEdgeType(); + } else { + // use canonical value when not set to avoid cache misses + desc.fVertexEdgeType = GrDrawState::kHairLine_EdgeType; + } + + for (int s = 0; s < GrDrawState::kNumStages; ++s) { + StageDesc& stage = desc.fStages[s]; + + stage.fOptFlags = 0; + stage.setEnabled(this->isStageEnabled(s)); + + bool skip = s < drawState.getFirstCoverageStage() ? skipColor : + skipCoverage; + + if (!skip && stage.isEnabled()) { + lastEnabledStage = s; + const GrGLTexture* texture = + static_cast<const GrGLTexture*>(drawState.getTexture(s)); + GrAssert(NULL != texture); + const GrSamplerState& sampler = drawState.getSampler(s); + // we matrix to invert when orientation is TopDown, so make sure + // we aren't in that case before flagging as identity. + if (TextureMatrixIsIdentity(texture, sampler)) { + stage.fOptFlags |= StageDesc::kIdentityMatrix_OptFlagBit; + } else if (!sampler.getMatrix().hasPerspective()) { + stage.fOptFlags |= StageDesc::kNoPerspective_OptFlagBit; + } + switch (sampler.getSampleMode()) { + case GrSamplerState::kNormal_SampleMode: + stage.fCoordMapping = StageDesc::kIdentity_CoordMapping; + break; + case GrSamplerState::kRadial_SampleMode: + stage.fCoordMapping = StageDesc::kRadialGradient_CoordMapping; + break; + case GrSamplerState::kRadial2_SampleMode: + if (sampler.radial2IsDegenerate()) { + stage.fCoordMapping = + StageDesc::kRadial2GradientDegenerate_CoordMapping; + } else { + stage.fCoordMapping = + StageDesc::kRadial2Gradient_CoordMapping; + } + break; + case GrSamplerState::kSweep_SampleMode: + stage.fCoordMapping = StageDesc::kSweepGradient_CoordMapping; + break; + default: + GrCrash("Unexpected sample mode!"); + break; + } + + switch (sampler.getFilter()) { + // these both can use a regular texture2D() + case GrSamplerState::kNearest_Filter: + case GrSamplerState::kBilinear_Filter: + stage.fFetchMode = StageDesc::kSingle_FetchMode; + break; + // performs 4 texture2D()s + case GrSamplerState::k4x4Downsample_Filter: + stage.fFetchMode = StageDesc::k2x2_FetchMode; + break; + // performs fKernelWidth texture2D()s + case GrSamplerState::kConvolution_Filter: + stage.fFetchMode = StageDesc::kConvolution_FetchMode; + break; + case GrSamplerState::kDilate_Filter: + stage.fFetchMode = StageDesc::kDilate_FetchMode; + break; + case GrSamplerState::kErode_Filter: + stage.fFetchMode = StageDesc::kErode_FetchMode; + break; + default: + GrCrash("Unexpected filter!"); + break; + } + + if (sampler.hasTextureDomain()) { + GrAssert(GrSamplerState::kClamp_WrapMode == + sampler.getWrapX() && + GrSamplerState::kClamp_WrapMode == + sampler.getWrapY()); + stage.fOptFlags |= StageDesc::kCustomTextureDomain_OptFlagBit; + } + + stage.fInConfigFlags = 0; + if (!this->glCaps().textureSwizzleSupport()) { + if (GrPixelConfigIsAlphaOnly(texture->config())) { + // if we don't have texture swizzle support then + // the shader must do an alpha smear after reading + // the texture + stage.fInConfigFlags |= StageDesc::kSmearAlpha_InConfigFlag; + } else if (sampler.swapsRAndB()) { + stage.fInConfigFlags |= StageDesc::kSwapRAndB_InConfigFlag; + } + } + if (GrPixelConfigIsUnpremultiplied(texture->config())) { + // The shader generator assumes that color channels are bytes + // when rounding. + GrAssert(4 == GrBytesPerPixel(texture->config())); + if (kUpOnWrite_DownOnRead_UnpremulConversion == + fUnpremulConversion) { + stage.fInConfigFlags |= + StageDesc::kMulRGBByAlpha_RoundDown_InConfigFlag; + } else { + stage.fInConfigFlags |= + StageDesc::kMulRGBByAlpha_RoundUp_InConfigFlag; + } + } + + if (sampler.getFilter() == GrSamplerState::kConvolution_Filter || + sampler.getFilter() == GrSamplerState::kDilate_Filter || + sampler.getFilter() == GrSamplerState::kErode_Filter) { + stage.fKernelWidth = sampler.getKernelWidth(); + } else { + stage.fKernelWidth = 0; + } + } else { + stage.fOptFlags = 0; + stage.fCoordMapping = (StageDesc::CoordMapping) 0; + stage.fInConfigFlags = 0; + stage.fFetchMode = (StageDesc::FetchMode) 0; + stage.fKernelWidth = 0; + } + } + + if (GrPixelConfigIsUnpremultiplied(drawState.getRenderTarget()->config())) { + // The shader generator assumes that color channels are bytes + // when rounding. + GrAssert(4 == GrBytesPerPixel(drawState.getRenderTarget()->config())); + if (kUpOnWrite_DownOnRead_UnpremulConversion == fUnpremulConversion) { + desc.fOutputConfig = + ProgramDesc::kUnpremultiplied_RoundUp_OutputConfig; + } else { + desc.fOutputConfig = + ProgramDesc::kUnpremultiplied_RoundDown_OutputConfig; + } + } else { + desc.fOutputConfig = ProgramDesc::kPremultiplied_OutputConfig; + } + + desc.fDualSrcOutput = ProgramDesc::kNone_DualSrcOutput; + + // currently the experimental GS will only work with triangle prims + // (and it doesn't do anything other than pass through values from + // the VS to the FS anyway). +#if 0 && GR_GL_EXPERIMENTAL_GS + desc.fExperimentalGS = this->getCaps().fGeometryShaderSupport; +#endif + + // we want to avoid generating programs with different "first cov stage" + // values when they would compute the same result. + // We set field in the desc to kNumStages when either there are no + // coverage stages or the distinction between coverage and color is + // immaterial. + int firstCoverageStage = GrDrawState::kNumStages; + desc.fFirstCoverageStage = GrDrawState::kNumStages; + bool hasCoverage = drawState.getFirstCoverageStage() <= lastEnabledStage; + if (hasCoverage) { + firstCoverageStage = drawState.getFirstCoverageStage(); + } + + // other coverage inputs + if (!hasCoverage) { + hasCoverage = + desc.fEdgeAANumEdges || + requiresAttributeCoverage || + (desc.fVertexLayout & GrDrawTarget::kEdge_VertexLayoutBit); + } + + if (hasCoverage) { + // color filter is applied between color/coverage computation + if (SkXfermode::kDst_Mode != desc.fColorFilterXfermode) { + desc.fFirstCoverageStage = firstCoverageStage; + } + + if (this->getCaps().fDualSourceBlendingSupport && + !(blendOpts & (kEmitCoverage_BlendOptFlag | + kCoverageAsAlpha_BlendOptFlag))) { + if (kZero_BlendCoeff == dstCoeff) { + // write the coverage value to second color + desc.fDualSrcOutput = ProgramDesc::kCoverage_DualSrcOutput; + desc.fFirstCoverageStage = firstCoverageStage; + } else if (kSA_BlendCoeff == dstCoeff) { + // SA dst coeff becomes 1-(1-SA)*coverage when dst is partially + // cover + desc.fDualSrcOutput = ProgramDesc::kCoverageISA_DualSrcOutput; + desc.fFirstCoverageStage = firstCoverageStage; + } else if (kSC_BlendCoeff == dstCoeff) { + // SA dst coeff becomes 1-(1-SA)*coverage when dst is partially + // cover + desc.fDualSrcOutput = ProgramDesc::kCoverageISC_DualSrcOutput; + desc.fFirstCoverageStage = firstCoverageStage; + } + } + } +} |