aboutsummaryrefslogtreecommitdiffstats
path: root/src/pdf/SkPDFShader.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/pdf/SkPDFShader.cpp')
-rw-r--r--src/pdf/SkPDFShader.cpp778
1 files changed, 778 insertions, 0 deletions
diff --git a/src/pdf/SkPDFShader.cpp b/src/pdf/SkPDFShader.cpp
new file mode 100644
index 0000000..6845e09
--- /dev/null
+++ b/src/pdf/SkPDFShader.cpp
@@ -0,0 +1,778 @@
+/*
+ * Copyright (C) 2011 Google Inc.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "SkPDFShader.h"
+
+#include "SkCanvas.h"
+#include "SkPDFCatalog.h"
+#include "SkPDFDevice.h"
+#include "SkPDFTypes.h"
+#include "SkPDFUtils.h"
+#include "SkScalar.h"
+#include "SkStream.h"
+#include "SkTemplates.h"
+#include "SkThread.h"
+#include "SkTypes.h"
+
+static void transformBBox(const SkMatrix& matrix, SkRect* bbox) {
+ SkMatrix inverse;
+ inverse.reset();
+ matrix.invert(&inverse);
+ inverse.mapRect(bbox);
+}
+
+static void unitToPointsMatrix(const SkPoint pts[2], SkMatrix* matrix) {
+ SkVector vec = pts[1] - pts[0];
+ SkScalar mag = vec.length();
+ SkScalar inv = mag ? SkScalarInvert(mag) : 0;
+
+ vec.scale(inv);
+ matrix->setSinCos(vec.fY, vec.fX);
+ matrix->preTranslate(pts[0].fX, pts[0].fY);
+ matrix->preScale(mag, mag);
+}
+
+/* Assumes t + startOffset is on the stack and does a linear interpolation on t
+ between startOffset and endOffset from prevColor to curColor (for each color
+ component), leaving the result in component order on the stack.
+ @param range endOffset - startOffset
+ @param curColor[components] The current color components.
+ @param prevColor[components] The previous color components.
+ @param result The result ps function.
+ */
+static void interpolateColorCode(SkScalar range, SkScalar* curColor,
+ SkScalar* prevColor, int components,
+ SkString* result) {
+ // Figure out how to scale each color component.
+ SkAutoSTMalloc<4, SkScalar> multiplierAlloc(components);
+ SkScalar *multiplier = multiplierAlloc.get();
+ for (int i = 0; i < components; i++) {
+ multiplier[i] = SkScalarDiv(curColor[i] - prevColor[i], range);
+ }
+
+ // Calculate when we no longer need to keep a copy of the input parameter t.
+ // If the last component to use t is i, then dupInput[0..i - 1] = true
+ // and dupInput[i .. components] = false.
+ SkAutoSTMalloc<4, bool> dupInputAlloc(components);
+ bool *dupInput = dupInputAlloc.get();
+ dupInput[components - 1] = false;
+ for (int i = components - 2; i >= 0; i--) {
+ dupInput[i] = dupInput[i + 1] || multiplier[i + 1] != 0;
+ }
+
+ if (!dupInput[0] && multiplier[0] == 0) {
+ result->append("pop ");
+ }
+
+ for (int i = 0; i < components; i++) {
+ // If the next components needs t, make a copy.
+ if (dupInput[i]) {
+ result->append("dup ");
+ }
+
+ if (multiplier[i] == 0) {
+ result->appendScalar(prevColor[i]);
+ result->append(" ");
+ } else {
+ if (multiplier[i] != 1) {
+ result->appendScalar(multiplier[i]);
+ result->append(" mul ");
+ }
+ if (prevColor[i] != 0) {
+ result->appendScalar(prevColor[i]);
+ result->append(" add ");
+ }
+ }
+
+ if (dupInput[i]) {
+ result->append("exch\n");
+ }
+ }
+}
+
+/* Generate Type 4 function code to map t=[0,1) to the passed gradient,
+ clamping at the edges of the range. The generated code will be of the form:
+ if (t < 0) {
+ return colorData[0][r,g,b];
+ } else {
+ if (t < info.fColorOffsets[1]) {
+ return linearinterpolation(colorData[0][r,g,b],
+ colorData[1][r,g,b]);
+ } else {
+ if (t < info.fColorOffsets[2]) {
+ return linearinterpolation(colorData[1][r,g,b],
+ colorData[2][r,g,b]);
+ } else {
+
+ ... } else {
+ return colorData[info.fColorCount - 1][r,g,b];
+ }
+ ...
+ }
+ }
+ */
+static void gradientFunctionCode(const SkShader::GradientInfo& info,
+ SkString* result) {
+ /* We want to linearly interpolate from the previous color to the next.
+ Scale the colors from 0..255 to 0..1 and determine the multipliers
+ for interpolation.
+ C{r,g,b}(t, section) = t - offset_(section-1) + t * Multiplier{r,g,b}.
+ */
+ static const int kColorComponents = 3;
+ typedef SkScalar ColorTuple[kColorComponents];
+ SkAutoSTMalloc<4, ColorTuple> colorDataAlloc(info.fColorCount);
+ ColorTuple *colorData = colorDataAlloc.get();
+ const SkScalar scale = SkScalarInvert(SkIntToScalar(255));
+ for (int i = 0; i < info.fColorCount; i++) {
+ colorData[i][0] = SkScalarMul(SkColorGetR(info.fColors[i]), scale);
+ colorData[i][1] = SkScalarMul(SkColorGetG(info.fColors[i]), scale);
+ colorData[i][2] = SkScalarMul(SkColorGetB(info.fColors[i]), scale);
+ }
+
+ // Clamp the initial color.
+ result->append("dup 0 le {pop ");
+ result->appendScalar(colorData[0][0]);
+ result->append(" ");
+ result->appendScalar(colorData[0][1]);
+ result->append(" ");
+ result->appendScalar(colorData[0][2]);
+ result->append(" }\n");
+
+ // The gradient colors.
+ for (int i = 1 ; i < info.fColorCount; i++) {
+ result->append("{dup ");
+ result->appendScalar(info.fColorOffsets[i]);
+ result->append(" le {");
+ if (info.fColorOffsets[i - 1] != 0) {
+ result->appendScalar(info.fColorOffsets[i - 1]);
+ result->append(" sub\n");
+ }
+
+ interpolateColorCode(info.fColorOffsets[i] - info.fColorOffsets[i - 1],
+ colorData[i], colorData[i - 1], kColorComponents,
+ result);
+ result->append("}\n");
+ }
+
+ // Clamp the final color.
+ result->append("{pop ");
+ result->appendScalar(colorData[info.fColorCount - 1][0]);
+ result->append(" ");
+ result->appendScalar(colorData[info.fColorCount - 1][1]);
+ result->append(" ");
+ result->appendScalar(colorData[info.fColorCount - 1][2]);
+
+ for (int i = 0 ; i < info.fColorCount; i++) {
+ result->append("} ifelse\n");
+ }
+}
+
+/* Map a value of t on the stack into [0, 1) for Repeat or Mirror tile mode. */
+static void tileModeCode(SkShader::TileMode mode, SkString* result) {
+ if (mode == SkShader::kRepeat_TileMode) {
+ result->append("dup truncate sub\n"); // Get the fractional part.
+ result->append("dup 0 le {1 add} if\n"); // Map (-1,0) => (0,1)
+ return;
+ }
+
+ if (mode == SkShader::kMirror_TileMode) {
+ // Map t mod 2 into [0, 1, 1, 0].
+ // Code Stack
+ result->append("abs " // Map negative to positive.
+ "dup " // t.s t.s
+ "truncate " // t.s t
+ "dup " // t.s t t
+ "cvi " // t.s t T
+ "2 mod " // t.s t (i mod 2)
+ "1 eq " // t.s t true|false
+ "3 1 roll " // true|false t.s t
+ "sub " // true|false 0.s
+ "exch " // 0.s true|false
+ "{1 exch sub} if\n"); // 1 - 0.s|0.s
+ }
+}
+
+static SkString linearCode(const SkShader::GradientInfo& info) {
+ SkString function("{pop\n"); // Just ditch the y value.
+ tileModeCode(info.fTileMode, &function);
+ gradientFunctionCode(info, &function);
+ function.append("}");
+ return function;
+}
+
+static SkString radialCode(const SkShader::GradientInfo& info) {
+ SkString function("{");
+ // Find the distance from the origin.
+ function.append("dup " // x y y
+ "mul " // x y^2
+ "exch " // y^2 x
+ "dup " // y^2 x x
+ "mul " // y^2 x^2
+ "add " // y^2+x^2
+ "sqrt\n"); // sqrt(y^2+x^2)
+
+ tileModeCode(info.fTileMode, &function);
+ gradientFunctionCode(info, &function);
+ function.append("}");
+ return function;
+}
+
+/* The math here is all based on the description in Two_Point_Radial_Gradient,
+ with one simplification, the coordinate space has been scaled so that
+ Dr = 1. This means we don't need to scale the entire equation by 1/Dr^2.
+ */
+static SkString twoPointRadialCode(const SkShader::GradientInfo& info) {
+ SkScalar dx = info.fPoint[0].fX - info.fPoint[1].fX;
+ SkScalar dy = info.fPoint[0].fY - info.fPoint[1].fY;
+ SkScalar sr = info.fRadius[0];
+ SkScalar a = SkScalarMul(dx, dx) + SkScalarMul(dy, dy) - SK_Scalar1;
+ bool posRoot = info.fRadius[1] > info.fRadius[0];
+
+ // We start with a stack of (x y), copy it and then consume one copy in
+ // order to calculate b and the other to calculate c.
+ SkString function("{");
+ function.append("2 copy ");
+
+ // Calculate -b and b^2.
+ function.appendScalar(dy);
+ function.append(" mul exch ");
+ function.appendScalar(dx);
+ function.append(" mul add ");
+ function.appendScalar(sr);
+ function.append(" sub 2 mul neg dup dup mul\n");
+
+ // Calculate c
+ function.append("4 2 roll dup mul exch dup mul add ");
+ function.appendScalar(SkScalarMul(sr, sr));
+ function.append(" sub\n");
+
+ // Calculate the determinate
+ function.appendScalar(SkScalarMul(SkIntToScalar(4), a));
+ function.append(" mul sub abs sqrt\n");
+
+ // And then the final value of t.
+ if (posRoot) {
+ function.append("sub ");
+ } else {
+ function.append("add ");
+ }
+ function.appendScalar(SkScalarMul(SkIntToScalar(2), a));
+ function.append(" div\n");
+
+ tileModeCode(info.fTileMode, &function);
+ gradientFunctionCode(info, &function);
+ function.append("}");
+ return function;
+}
+
+static SkString sweepCode(const SkShader::GradientInfo& info) {
+ SkString function("{exch atan 360 div\n");
+ tileModeCode(info.fTileMode, &function);
+ gradientFunctionCode(info, &function);
+ function.append("}");
+ return function;
+}
+
+SkPDFShader::~SkPDFShader() {
+ SkAutoMutexAcquire lock(canonicalShadersMutex());
+ ShaderCanonicalEntry entry(this, fState.get());
+ int index = canonicalShaders().find(entry);
+ SkASSERT(index >= 0);
+ canonicalShaders().removeShuffle(index);
+ fResources.unrefAll();
+}
+
+void SkPDFShader::emitObject(SkWStream* stream, SkPDFCatalog* catalog,
+ bool indirect) {
+ if (indirect)
+ return emitIndirectObject(stream, catalog);
+
+ fContent->emitObject(stream, catalog, indirect);
+}
+
+size_t SkPDFShader::getOutputSize(SkPDFCatalog* catalog, bool indirect) {
+ if (indirect)
+ return getIndirectOutputSize(catalog);
+
+ return fContent->getOutputSize(catalog, indirect);
+}
+
+void SkPDFShader::getResources(SkTDArray<SkPDFObject*>* resourceList) {
+ resourceList->setReserve(resourceList->count() + fResources.count());
+ for (int i = 0; i < fResources.count(); i++) {
+ resourceList->push(fResources[i]);
+ fResources[i]->ref();
+ }
+}
+
+// static
+SkPDFShader* SkPDFShader::getPDFShader(const SkShader& shader,
+ const SkMatrix& matrix,
+ const SkIRect& surfaceBBox) {
+ SkRefPtr<SkPDFShader> pdfShader;
+ SkAutoMutexAcquire lock(canonicalShadersMutex());
+ SkAutoTDelete<State> shaderState(new State(shader, matrix, surfaceBBox));
+
+ ShaderCanonicalEntry entry(NULL, shaderState.get());
+ int index = canonicalShaders().find(entry);
+ if (index >= 0) {
+ SkPDFShader* result = canonicalShaders()[index].fPDFShader;
+ result->ref();
+ return result;
+ }
+ // The PDFShader takes ownership of the shaderSate.
+ pdfShader = new SkPDFShader(shaderState.detach());
+ // Check for a valid shader.
+ if (pdfShader->fContent.get() == NULL) {
+ pdfShader->unref();
+ return NULL;
+ }
+ entry.fPDFShader = pdfShader.get();
+ canonicalShaders().push(entry);
+ return pdfShader.get(); // return the reference that came from new.
+}
+
+// static
+SkTDArray<SkPDFShader::ShaderCanonicalEntry>& SkPDFShader::canonicalShaders() {
+ // This initialization is only thread safe with gcc.
+ static SkTDArray<ShaderCanonicalEntry> gCanonicalShaders;
+ return gCanonicalShaders;
+}
+
+// static
+SkMutex& SkPDFShader::canonicalShadersMutex() {
+ // This initialization is only thread safe with gcc.
+ static SkMutex gCanonicalShadersMutex;
+ return gCanonicalShadersMutex;
+}
+
+// static
+SkPDFObject* SkPDFShader::rangeObject() {
+ // This initialization is only thread safe with gcc.
+ static SkPDFArray* range = NULL;
+ // This method is only used with canonicalShadersMutex, so it's safe to
+ // populate domain.
+ if (range == NULL) {
+ range = new SkPDFArray;
+ range->reserve(6);
+ range->append(new SkPDFInt(0))->unref();
+ range->append(new SkPDFInt(1))->unref();
+ range->append(new SkPDFInt(0))->unref();
+ range->append(new SkPDFInt(1))->unref();
+ range->append(new SkPDFInt(0))->unref();
+ range->append(new SkPDFInt(1))->unref();
+ }
+ return range;
+}
+
+SkPDFShader::SkPDFShader(State* state) : fState(state) {
+ if (fState.get()->fType == SkShader::kNone_GradientType) {
+ doImageShader();
+ } else {
+ doFunctionShader();
+ }
+}
+
+void SkPDFShader::doFunctionShader() {
+ SkString (*codeFunction)(const SkShader::GradientInfo& info) = NULL;
+ SkPoint transformPoints[2];
+
+ // Depending on the type of the gradient, we want to transform the
+ // coordinate space in different ways.
+ const SkShader::GradientInfo* info = &fState.get()->fInfo;
+ transformPoints[0] = info->fPoint[0];
+ transformPoints[1] = info->fPoint[1];
+ switch (fState.get()->fType) {
+ case SkShader::kLinear_GradientType:
+ codeFunction = &linearCode;
+ break;
+ case SkShader::kRadial_GradientType:
+ transformPoints[1] = transformPoints[0];
+ transformPoints[1].fX += info->fRadius[0];
+ codeFunction = &radialCode;
+ break;
+ case SkShader::kRadial2_GradientType: {
+ // Bail out if the radii are the same. Not setting fContent will
+ // cause the higher level code to detect the resulting object
+ // as invalid.
+ if (info->fRadius[0] == info->fRadius[1]) {
+ return;
+ }
+ transformPoints[1] = transformPoints[0];
+ SkScalar dr = info->fRadius[1] - info->fRadius[0];
+ transformPoints[1].fX += dr;
+ codeFunction = &twoPointRadialCode;
+ break;
+ }
+ case SkShader::kSweep_GradientType:
+ transformPoints[1] = transformPoints[0];
+ transformPoints[1].fX += 1;
+ codeFunction = &sweepCode;
+ break;
+ case SkShader::kColor_GradientType:
+ case SkShader::kNone_GradientType:
+ SkASSERT(false);
+ return;
+ }
+
+ // Move any scaling (assuming a unit gradient) or translation
+ // (and rotation for linear gradient), of the final gradient from
+ // info->fPoints to the matrix (updating bbox appropriately). Now
+ // the gradient can be drawn on on the unit segment.
+ SkMatrix mapperMatrix;
+ unitToPointsMatrix(transformPoints, &mapperMatrix);
+ SkMatrix finalMatrix = fState.get()->fCanvasTransform;
+ finalMatrix.preConcat(mapperMatrix);
+ finalMatrix.preConcat(fState.get()->fShaderTransform);
+ SkRect bbox;
+ bbox.set(fState.get()->fBBox);
+ transformBBox(finalMatrix, &bbox);
+
+ SkRefPtr<SkPDFArray> domain = new SkPDFArray;
+ domain->unref(); // SkRefPtr and new both took a reference.
+ domain->reserve(4);
+ domain->append(new SkPDFScalar(bbox.fLeft))->unref();
+ domain->append(new SkPDFScalar(bbox.fRight))->unref();
+ domain->append(new SkPDFScalar(bbox.fTop))->unref();
+ domain->append(new SkPDFScalar(bbox.fBottom))->unref();
+
+ SkString functionCode;
+ // The two point radial gradient further references fState.get()->fInfo
+ // in translating from x, y coordinates to the t parameter. So, we have
+ // to transform the points and radii according to the calculated matrix.
+ if (fState.get()->fType == SkShader::kRadial2_GradientType) {
+ SkShader::GradientInfo twoPointRadialInfo = *info;
+ SkMatrix inverseMapperMatrix;
+ mapperMatrix.invert(&inverseMapperMatrix);
+ inverseMapperMatrix.mapPoints(twoPointRadialInfo.fPoint, 2);
+ twoPointRadialInfo.fRadius[0] =
+ inverseMapperMatrix.mapRadius(info->fRadius[0]);
+ twoPointRadialInfo.fRadius[1] =
+ inverseMapperMatrix.mapRadius(info->fRadius[1]);
+ functionCode = codeFunction(twoPointRadialInfo);
+ } else {
+ functionCode = codeFunction(*info);
+ }
+
+ SkRefPtr<SkPDFStream> function = makePSFunction(functionCode, domain.get());
+ // Pass one reference to fResources, SkRefPtr and new both took a reference.
+ fResources.push(function.get());
+
+ SkRefPtr<SkPDFDict> pdfShader = new SkPDFDict;
+ pdfShader->unref(); // SkRefPtr and new both took a reference.
+ pdfShader->insert("ShadingType", new SkPDFInt(1))->unref();
+ pdfShader->insert("ColorSpace", new SkPDFName("DeviceRGB"))->unref();
+ pdfShader->insert("Domain", domain.get());
+ pdfShader->insert("Function", new SkPDFObjRef(function.get()))->unref();
+
+ fContent = new SkPDFDict("Pattern");
+ fContent->unref(); // SkRefPtr and new both took a reference.
+ fContent->insert("PatternType", new SkPDFInt(2))->unref();
+ fContent->insert("Matrix", SkPDFUtils::MatrixToArray(finalMatrix))->unref();
+ fContent->insert("Shading", pdfShader.get());
+}
+
+// SkShader* shader, SkMatrix matrix, const SkRect& surfaceBBox
+void SkPDFShader::doImageShader() {
+ fState.get()->fImage.lockPixels();
+
+ SkMatrix finalMatrix = fState.get()->fCanvasTransform;
+ finalMatrix.preConcat(fState.get()->fShaderTransform);
+ SkRect surfaceBBox;
+ surfaceBBox.set(fState.get()->fBBox);
+ transformBBox(finalMatrix, &surfaceBBox);
+
+ SkMatrix unflip;
+ unflip.setTranslate(0, SkScalarRound(surfaceBBox.height()));
+ unflip.preScale(1, -1);
+ SkISize size = SkISize::Make(SkScalarRound(surfaceBBox.width()),
+ SkScalarRound(surfaceBBox.height()));
+ SkPDFDevice pattern(size, size, unflip);
+ SkCanvas canvas(&pattern);
+ canvas.translate(-surfaceBBox.fLeft, -surfaceBBox.fTop);
+ finalMatrix.preTranslate(surfaceBBox.fLeft, surfaceBBox.fTop);
+
+ const SkBitmap* image = &fState.get()->fImage;
+ int width = image->width();
+ int height = image->height();
+ SkShader::TileMode tileModes[2];
+ tileModes[0] = fState.get()->fImageTileModes[0];
+ tileModes[1] = fState.get()->fImageTileModes[1];
+
+ canvas.drawBitmap(*image, 0, 0);
+ SkRect patternBBox = SkRect::MakeXYWH(-surfaceBBox.fLeft, -surfaceBBox.fTop,
+ width, height);
+
+ // Tiling is implied. First we handle mirroring.
+ if (tileModes[0] == SkShader::kMirror_TileMode) {
+ SkMatrix xMirror;
+ xMirror.setScale(-1, 1);
+ xMirror.postTranslate(2 * width, 0);
+ canvas.drawBitmapMatrix(*image, xMirror);
+ patternBBox.fRight += width;
+ }
+ if (tileModes[1] == SkShader::kMirror_TileMode) {
+ SkMatrix yMirror;
+ yMirror.setScale(1, -1);
+ yMirror.postTranslate(0, 2 * height);
+ canvas.drawBitmapMatrix(*image, yMirror);
+ patternBBox.fBottom += height;
+ }
+ if (tileModes[0] == SkShader::kMirror_TileMode &&
+ tileModes[1] == SkShader::kMirror_TileMode) {
+ SkMatrix mirror;
+ mirror.setScale(-1, -1);
+ mirror.postTranslate(2 * width, 2 * height);
+ canvas.drawBitmapMatrix(*image, mirror);
+ }
+
+ // Then handle Clamping, which requires expanding the pattern canvas to
+ // cover the entire surfaceBBox.
+
+ // If both x and y are in clamp mode, we start by filling in the corners.
+ // (Which are just a rectangles of the corner colors.)
+ if (tileModes[0] == SkShader::kClamp_TileMode &&
+ tileModes[1] == SkShader::kClamp_TileMode) {
+ SkPaint paint;
+ SkRect rect;
+ rect = SkRect::MakeLTRB(surfaceBBox.fLeft, surfaceBBox.fTop, 0, 0);
+ if (!rect.isEmpty()) {
+ paint.setColor(image->getColor(0, 0));
+ canvas.drawRect(rect, paint);
+ }
+
+ rect = SkRect::MakeLTRB(width, surfaceBBox.fTop, surfaceBBox.fRight, 0);
+ if (!rect.isEmpty()) {
+ paint.setColor(image->getColor(width - 1, 0));
+ canvas.drawRect(rect, paint);
+ }
+
+ rect = SkRect::MakeLTRB(width, height, surfaceBBox.fRight,
+ surfaceBBox.fBottom);
+ if (!rect.isEmpty()) {
+ paint.setColor(image->getColor(width - 1, height - 1));
+ canvas.drawRect(rect, paint);
+ }
+
+ rect = SkRect::MakeLTRB(surfaceBBox.fLeft, height, 0,
+ surfaceBBox.fBottom);
+ if (!rect.isEmpty()) {
+ paint.setColor(image->getColor(0, height - 1));
+ canvas.drawRect(rect, paint);
+ }
+ }
+
+ // Then expand the left, right, top, then bottom.
+ if (tileModes[0] == SkShader::kClamp_TileMode) {
+ SkIRect subset = SkIRect::MakeXYWH(0, 0, 1, height);
+ if (surfaceBBox.fLeft < 0) {
+ SkBitmap left;
+ SkAssertResult(image->extractSubset(&left, subset));
+
+ SkMatrix leftMatrix;
+ leftMatrix.setScale(-surfaceBBox.fLeft, 1);
+ leftMatrix.postTranslate(surfaceBBox.fLeft, 0);
+ canvas.drawBitmapMatrix(left, leftMatrix);
+
+ if (tileModes[1] == SkShader::kMirror_TileMode) {
+ leftMatrix.postScale(1, -1);
+ leftMatrix.postTranslate(0, 2 * height);
+ canvas.drawBitmapMatrix(left, leftMatrix);
+ }
+ patternBBox.fLeft = 0;
+ }
+
+ if (surfaceBBox.fRight > width) {
+ SkBitmap right;
+ subset.offset(width - 1, 0);
+ SkAssertResult(image->extractSubset(&right, subset));
+
+ SkMatrix rightMatrix;
+ rightMatrix.setScale(surfaceBBox.fRight - width, 1);
+ rightMatrix.postTranslate(width, 0);
+ canvas.drawBitmapMatrix(right, rightMatrix);
+
+ if (tileModes[1] == SkShader::kMirror_TileMode) {
+ rightMatrix.postScale(1, -1);
+ rightMatrix.postTranslate(0, 2 * height);
+ canvas.drawBitmapMatrix(right, rightMatrix);
+ }
+ patternBBox.fRight = surfaceBBox.width();
+ }
+ }
+
+ if (tileModes[1] == SkShader::kClamp_TileMode) {
+ SkIRect subset = SkIRect::MakeXYWH(0, 0, width, 1);
+ if (surfaceBBox.fTop < 0) {
+ SkBitmap top;
+ SkAssertResult(image->extractSubset(&top, subset));
+
+ SkMatrix topMatrix;
+ topMatrix.setScale(1, -surfaceBBox.fTop);
+ topMatrix.postTranslate(0, surfaceBBox.fTop);
+ canvas.drawBitmapMatrix(top, topMatrix);
+
+ if (tileModes[0] == SkShader::kMirror_TileMode) {
+ topMatrix.postScale(-1, 1);
+ topMatrix.postTranslate(2 * width, 0);
+ canvas.drawBitmapMatrix(top, topMatrix);
+ }
+ patternBBox.fTop = 0;
+ }
+
+ if (surfaceBBox.fBottom > height) {
+ SkBitmap bottom;
+ subset.offset(0, height - 1);
+ SkAssertResult(image->extractSubset(&bottom, subset));
+
+ SkMatrix bottomMatrix;
+ bottomMatrix.setScale(1, surfaceBBox.fBottom - height);
+ bottomMatrix.postTranslate(0, height);
+ canvas.drawBitmapMatrix(bottom, bottomMatrix);
+
+ if (tileModes[0] == SkShader::kMirror_TileMode) {
+ bottomMatrix.postScale(-1, 1);
+ bottomMatrix.postTranslate(2 * width, 0);
+ canvas.drawBitmapMatrix(bottom, bottomMatrix);
+ }
+ patternBBox.fBottom = surfaceBBox.height();
+ }
+ }
+
+ SkRefPtr<SkPDFArray> patternBBoxArray = new SkPDFArray;
+ patternBBoxArray->unref(); // SkRefPtr and new both took a reference.
+ patternBBoxArray->reserve(4);
+ patternBBoxArray->append(new SkPDFScalar(patternBBox.fLeft))->unref();
+ patternBBoxArray->append(new SkPDFScalar(patternBBox.fTop))->unref();
+ patternBBoxArray->append(new SkPDFScalar(patternBBox.fRight))->unref();
+ patternBBoxArray->append(new SkPDFScalar(patternBBox.fBottom))->unref();
+
+ // Put the canvas into the pattern stream (fContent).
+ SkRefPtr<SkStream> content = pattern.content();
+ content->unref(); // SkRefPtr and content() both took a reference.
+ pattern.getResources(&fResources);
+
+ fContent = new SkPDFStream(content.get());
+ fContent->unref(); // SkRefPtr and new both took a reference.
+ fContent->insert("Type", new SkPDFName("Pattern"))->unref();
+ fContent->insert("PatternType", new SkPDFInt(1))->unref();
+ fContent->insert("PaintType", new SkPDFInt(1))->unref();
+ fContent->insert("TilingType", new SkPDFInt(1))->unref();
+ fContent->insert("BBox", patternBBoxArray.get());
+ fContent->insert("XStep", new SkPDFScalar(patternBBox.width()))->unref();
+ fContent->insert("YStep", new SkPDFScalar(patternBBox.height()))->unref();
+ fContent->insert("Resources", pattern.getResourceDict().get());
+ fContent->insert("Matrix", SkPDFUtils::MatrixToArray(finalMatrix))->unref();
+
+ fState.get()->fImage.unlockPixels();
+}
+
+SkPDFStream* SkPDFShader::makePSFunction(const SkString& psCode,
+ SkPDFArray* domain) {
+ SkRefPtr<SkMemoryStream> funcStream =
+ new SkMemoryStream(psCode.c_str(), psCode.size(), true);
+ funcStream->unref(); // SkRefPtr and new both took a reference.
+
+ SkPDFStream* result = new SkPDFStream(funcStream.get());
+ result->insert("FunctionType", new SkPDFInt(4))->unref();
+ result->insert("Domain", domain);
+ result->insert("Range", rangeObject());
+ return result;
+}
+
+bool SkPDFShader::State::operator==(const SkPDFShader::State& b) const {
+ if (fType != b.fType ||
+ fCanvasTransform != b.fCanvasTransform ||
+ fShaderTransform != b.fShaderTransform ||
+ fBBox != b.fBBox) {
+ return false;
+ }
+
+ if (fType == SkShader::kNone_GradientType) {
+ if (fPixelGeneration != b.fPixelGeneration ||
+ fPixelGeneration == 0 ||
+ fImageTileModes[0] != b.fImageTileModes[0] ||
+ fImageTileModes[1] != b.fImageTileModes[1]) {
+ return false;
+ }
+ } else {
+ if (fInfo.fColorCount != b.fInfo.fColorCount ||
+ memcmp(fInfo.fColors, b.fInfo.fColors,
+ sizeof(SkColor) * fInfo.fColorCount) != 0 ||
+ memcmp(fInfo.fColorOffsets, b.fInfo.fColorOffsets,
+ sizeof(SkScalar) * fInfo.fColorCount) != 0 ||
+ fInfo.fPoint[0] != b.fInfo.fPoint[0] ||
+ fInfo.fTileMode != b.fInfo.fTileMode) {
+ return false;
+ }
+
+ switch (fType) {
+ case SkShader::kLinear_GradientType:
+ if (fInfo.fPoint[1] != b.fInfo.fPoint[1]) {
+ return false;
+ }
+ break;
+ case SkShader::kRadial_GradientType:
+ if (fInfo.fRadius[0] != b.fInfo.fRadius[0]) {
+ return false;
+ }
+ break;
+ case SkShader::kRadial2_GradientType:
+ if (fInfo.fPoint[1] != b.fInfo.fPoint[1] ||
+ fInfo.fRadius[0] != b.fInfo.fRadius[0] ||
+ fInfo.fRadius[1] != b.fInfo.fRadius[1]) {
+ return false;
+ }
+ break;
+ case SkShader::kSweep_GradientType:
+ case SkShader::kNone_GradientType:
+ case SkShader::kColor_GradientType:
+ break;
+ }
+ }
+ return true;
+}
+
+SkPDFShader::State::State(const SkShader& shader,
+ const SkMatrix& canvasTransform, const SkIRect& bbox)
+ : fCanvasTransform(canvasTransform),
+ fBBox(bbox) {
+
+ fInfo.fColorCount = 0;
+ fInfo.fColors = NULL;
+ fInfo.fColorOffsets = NULL;
+ shader.getLocalMatrix(&fShaderTransform);
+
+ fType = shader.asAGradient(&fInfo);
+
+ if (fType == SkShader::kNone_GradientType) {
+ SkShader::BitmapType bitmapType;
+ SkMatrix matrix;
+ bitmapType = shader.asABitmap(&fImage, &matrix, fImageTileModes, NULL);
+ if (bitmapType != SkShader::kDefault_BitmapType) {
+ fImage.reset();
+ return;
+ }
+ SkASSERT(matrix.isIdentity());
+ fPixelGeneration = fImage.getGenerationID();
+ } else {
+ fColorData.set(sk_malloc_throw(
+ fInfo.fColorCount * (sizeof(SkColor) + sizeof(SkScalar))));
+ fInfo.fColors = (SkColor*)fColorData.get();
+ fInfo.fColorOffsets = (SkScalar*)(fInfo.fColors + fInfo.fColorCount);
+ shader.asAGradient(&fInfo);
+ }
+}