1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
|
/* libs/graphics/sgl/SkGeometry.h
**
** Copyright 2006, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#ifndef SkGeometry_DEFINED
#define SkGeometry_DEFINED
#include "SkMatrix.h"
/** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the
equation.
*/
int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]);
///////////////////////////////////////////////////////////////////////////////
/** Set pt to the point on the src quadratic specified by t. t must be
0 <= t <= 1.0
*/
void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent = NULL);
void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent = NULL);
/** Given a src quadratic bezier, chop it at the specified t value,
where 0 < t < 1, and return the two new quadratics in dst:
dst[0..2] and dst[2..4]
*/
void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t);
/** Given a src quadratic bezier, chop it at the specified t == 1/2,
The new quads are returned in dst[0..2] and dst[2..4]
*/
void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]);
/** Given the 3 coefficients for a quadratic bezier (either X or Y values), look
for extrema, and return the number of t-values that are found that represent
these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the
function returns 0.
Returned count tValues[]
0 ignored
1 0 < tValues[0] < 1
*/
int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]);
/** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that
the resulting beziers are monotonic in Y. This is called by the scan converter.
Depending on what is returned, dst[] is treated as follows
0 dst[0..2] is the original quad
1 dst[0..2] and dst[2..4] are the two new quads
*/
int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]);
int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]);
/** Given 3 points on a quadratic bezier, divide it into 2 quadratics
if the point of maximum curvature exists on the quad segment.
Depending on what is returned, dst[] is treated as follows
1 dst[0..2] is the original quad
2 dst[0..2] and dst[2..4] are the two new quads
If dst == null, it is ignored and only the count is returned.
*/
int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]);
////////////////////////////////////////////////////////////////////////////////////////
/** Convert from parametric from (pts) to polynomial coefficients
coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3]
*/
void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]);
/** Set pt to the point on the src cubic specified by t. t must be
0 <= t <= 1.0
*/
void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull, SkVector* tangentOrNull, SkVector* curvatureOrNull);
/** Given a src cubic bezier, chop it at the specified t value,
where 0 < t < 1, and return the two new cubics in dst:
dst[0..3] and dst[3..6]
*/
void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t);
void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], const SkScalar t[], int t_count);
/** Given a src cubic bezier, chop it at the specified t == 1/2,
The new cubics are returned in dst[0..3] and dst[3..6]
*/
void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]);
/** Given the 4 coefficients for a cubic bezier (either X or Y values), look
for extrema, and return the number of t-values that are found that represent
these extrema. If the cubic has no extrema betwee (0..1) exclusive, the
function returns 0.
Returned count tValues[]
0 ignored
1 0 < tValues[0] < 1
2 0 < tValues[0] < tValues[1] < 1
*/
int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar tValues[2]);
/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
the resulting beziers are monotonic in Y. This is called by the scan converter.
Depending on what is returned, dst[] is treated as follows
0 dst[0..3] is the original cubic
1 dst[0..3] and dst[3..6] are the two new cubics
2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics
If dst == null, it is ignored and only the count is returned.
*/
int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]);
int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]);
/** Given a cubic bezier, return 0, 1, or 2 t-values that represent the
inflection points.
*/
int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]);
/** Return 1 for no chop, or 2 for having chopped the cubic at its
inflection point.
*/
int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]);
int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]);
int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], SkScalar tValues[3] = NULL);
///////////////////////////////////////////////////////////////////////////////////////////
enum SkRotationDirection {
kCW_SkRotationDirection,
kCCW_SkRotationDirection
};
/** Maximum number of points needed in the quadPoints[] parameter for
SkBuildQuadArc()
*/
#define kSkBuildQuadArcStorage 17
/** Given 2 unit vectors and a rotation direction, fill out the specified
array of points with quadratic segments. Return is the number of points
written to, which will be { 0, 3, 5, 7, ... kSkBuildQuadArcStorage }
matrix, if not null, is appled to the points before they are returned.
*/
int SkBuildQuadArc(const SkVector& unitStart, const SkVector& unitStop, SkRotationDirection,
const SkMatrix* matrix, SkPoint quadPoints[]);
#endif
|