1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
|
/*
* Copyright (C) 2006 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef SkMath_DEFINED
#define SkMath_DEFINED
#include "SkTypes.h"
//! Returns the number of leading zero bits (0...32)
int SkCLZ_portable(uint32_t);
/** Computes the 64bit product of a * b, and then shifts the answer down by
shift bits, returning the low 32bits. shift must be [0..63]
e.g. to perform a fixedmul, call SkMulShift(a, b, 16)
*/
int32_t SkMulShift(int32_t a, int32_t b, unsigned shift);
/** Computes numer1 * numer2 / denom in full 64 intermediate precision.
It is an error for denom to be 0. There is no special handling if
the result overflows 32bits.
*/
int32_t SkMulDiv(int32_t numer1, int32_t numer2, int32_t denom);
/** Computes (numer1 << shift) / denom in full 64 intermediate precision.
It is an error for denom to be 0. There is no special handling if
the result overflows 32bits.
*/
int32_t SkDivBits(int32_t numer, int32_t denom, int shift);
/** Return the integer square root of value, with a bias of bitBias
*/
int32_t SkSqrtBits(int32_t value, int bitBias);
/** Return the integer square root of n, treated as a SkFixed (16.16)
*/
#define SkSqrt32(n) SkSqrtBits(n, 15)
/** Return the integer cube root of value, with a bias of bitBias
*/
int32_t SkCubeRootBits(int32_t value, int bitBias);
/** Returns -1 if n < 0, else returns 0
*/
#define SkExtractSign(n) ((int32_t)(n) >> 31)
/** If sign == -1, returns -n, else sign must be 0, and returns n.
Typically used in conjunction with SkExtractSign().
*/
static inline int32_t SkApplySign(int32_t n, int32_t sign) {
SkASSERT(sign == 0 || sign == -1);
return (n ^ sign) - sign;
}
/** Return x with the sign of y */
static inline int32_t SkCopySign32(int32_t x, int32_t y) {
return SkApplySign(x, SkExtractSign(x ^ y));
}
/** Returns (value < 0 ? 0 : value) efficiently (i.e. no compares or branches)
*/
static inline int SkClampPos(int value) {
return value & ~(value >> 31);
}
/** Given an integer and a positive (max) integer, return the value
pinned against 0 and max, inclusive.
Note: only works as long as max - value doesn't wrap around
@param value The value we want returned pinned between [0...max]
@param max The positive max value
@return 0 if value < 0, max if value > max, else value
*/
static inline int SkClampMax(int value, int max) {
// ensure that max is positive
SkASSERT(max >= 0);
// ensure that if value is negative, max - value doesn't wrap around
SkASSERT(value >= 0 || max - value > 0);
#ifdef SK_CPU_HAS_CONDITIONAL_INSTR
if (value < 0) {
value = 0;
}
if (value > max) {
value = max;
}
return value;
#else
int diff = max - value;
// clear diff if diff is positive
diff &= diff >> 31;
// clear the result if value < 0
return (value + diff) & ~(value >> 31);
#endif
}
/** Given a positive value and a positive max, return the value
pinned against max.
Note: only works as long as max - value doesn't wrap around
@return max if value >= max, else value
*/
static inline unsigned SkClampUMax(unsigned value, unsigned max) {
#ifdef SK_CPU_HAS_CONDITIONAL_INSTR
if (value > max) {
value = max;
}
return value;
#else
int diff = max - value;
// clear diff if diff is positive
diff &= diff >> 31;
return value + diff;
#endif
}
///////////////////////////////////////////////////////////////////////////////
#if defined(__arm__) && !defined(__thumb__)
#define SkCLZ(x) __builtin_clz(x)
#endif
#ifndef SkCLZ
#define SkCLZ(x) SkCLZ_portable(x)
#endif
///////////////////////////////////////////////////////////////////////////////
/** Returns the smallest power-of-2 that is >= the specified value. If value
is already a power of 2, then it is returned unchanged. It is undefined
if value is <= 0.
*/
static inline int SkNextPow2(int value) {
SkASSERT(value > 0);
return 1 << (32 - SkCLZ(value - 1));
}
/** Returns the log2 of the specified value, were that value to be rounded up
to the next power of 2. It is undefined to pass 0. Examples:
SkNextLog2(1) -> 0
SkNextLog2(2) -> 1
SkNextLog2(3) -> 2
SkNextLog2(4) -> 2
SkNextLog2(5) -> 3
*/
static inline int SkNextLog2(uint32_t value) {
SkASSERT(value != 0);
return 32 - SkCLZ(value - 1);
}
/** Returns true if value is a power of 2. Does not explicitly check for
value <= 0.
*/
static inline bool SkIsPow2(int value) {
return (value & (value - 1)) == 0;
}
///////////////////////////////////////////////////////////////////////////////
/** SkMulS16(a, b) multiplies a * b, but requires that a and b are both int16_t.
With this requirement, we can generate faster instructions on some
architectures.
*/
#if defined(__arm__) \
&& !defined(__thumb__) \
&& !defined(__ARM_ARCH_4T__) \
&& !defined(__ARM_ARCH_5T__)
static inline int32_t SkMulS16(S16CPU x, S16CPU y) {
SkASSERT((int16_t)x == x);
SkASSERT((int16_t)y == y);
int32_t product;
asm("smulbb %0, %1, %2 \n"
: "=r"(product)
: "r"(x), "r"(y)
);
return product;
}
#else
#ifdef SK_DEBUG
static inline int32_t SkMulS16(S16CPU x, S16CPU y) {
SkASSERT((int16_t)x == x);
SkASSERT((int16_t)y == y);
return x * y;
}
#else
#define SkMulS16(x, y) ((x) * (y))
#endif
#endif
/** Return a*b/255, truncating away any fractional bits. Only valid if both
a and b are 0..255
*/
static inline U8CPU SkMulDiv255Trunc(U8CPU a, U8CPU b) {
SkASSERT((uint8_t)a == a);
SkASSERT((uint8_t)b == b);
unsigned prod = SkMulS16(a, b) + 1;
return (prod + (prod >> 8)) >> 8;
}
/** Return a*b/255, rounding any fractional bits. Only valid if both
a and b are 0..255
*/
static inline U8CPU SkMulDiv255Round(U8CPU a, U8CPU b) {
SkASSERT((uint8_t)a == a);
SkASSERT((uint8_t)b == b);
unsigned prod = SkMulS16(a, b) + 128;
return (prod + (prod >> 8)) >> 8;
}
/** Return (a*b)/255, taking the ceiling of any fractional bits. Only valid if
both a and b are 0..255. The expected result equals (a * b + 254) / 255.
*/
static inline U8CPU SkMulDiv255Ceiling(U8CPU a, U8CPU b) {
SkASSERT((uint8_t)a == a);
SkASSERT((uint8_t)b == b);
unsigned prod = SkMulS16(a, b) + 255;
return (prod + (prod >> 8)) >> 8;
}
/** Return a*b/((1 << shift) - 1), rounding any fractional bits.
Only valid if a and b are unsigned and <= 32767 and shift is > 0 and <= 8
*/
static inline unsigned SkMul16ShiftRound(unsigned a, unsigned b, int shift) {
SkASSERT(a <= 32767);
SkASSERT(b <= 32767);
SkASSERT(shift > 0 && shift <= 8);
unsigned prod = SkMulS16(a, b) + (1 << (shift - 1));
return (prod + (prod >> shift)) >> shift;
}
/** Just the rounding step in SkDiv255Round: round(value / 255)
*/
static inline unsigned SkDiv255Round(unsigned prod) {
prod += 128;
return (prod + (prod >> 8)) >> 8;
}
#endif
|