aboutsummaryrefslogtreecommitdiffstats
path: root/include/core/SkTemplates.h
blob: 03f0892fac3e5073353c13fa06de767f45de895a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

/*
 * Copyright 2006 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */


#ifndef SkTemplates_DEFINED
#define SkTemplates_DEFINED

#include "SkTypes.h"

/** \file SkTemplates.h

    This file contains light-weight template classes for type-safe and exception-safe
    resource management.
*/

/** \class SkAutoTCallVProc

    Call a function when this goes out of scope. The template uses two
    parameters, the object, and a function that is to be called in the destructor.
    If detach() is called, the object reference is set to null. If the object
    reference is null when the destructor is called, we do not call the
    function.
*/
template <typename T, void (*P)(T*)> class SkAutoTCallVProc : SkNoncopyable {
public:
    SkAutoTCallVProc(T* obj): fObj(obj) {}
    ~SkAutoTCallVProc() { if (fObj) P(fObj); }
    T* detach() { T* obj = fObj; fObj = NULL; return obj; }
private:
    T* fObj;
};

/** \class SkAutoTCallIProc

Call a function when this goes out of scope. The template uses two
parameters, the object, and a function that is to be called in the destructor.
If detach() is called, the object reference is set to null. If the object
reference is null when the destructor is called, we do not call the
function.
*/
template <typename T, int (*P)(T*)> class SkAutoTCallIProc : SkNoncopyable {
public:
    SkAutoTCallIProc(T* obj): fObj(obj) {}
    ~SkAutoTCallIProc() { if (fObj) P(fObj); }
    T* detach() { T* obj = fObj; fObj = NULL; return obj; }
private:
    T* fObj;
};

// See also SkTScopedPtr.
template <typename T> class SkAutoTDelete : SkNoncopyable {
public:
    SkAutoTDelete(T* obj, bool deleteWhenDone = true) : fObj(obj) {
        fDeleteWhenDone = deleteWhenDone;
    }
    ~SkAutoTDelete() { if (fDeleteWhenDone) delete fObj; }

    T*      get() const { return fObj; }
    void    free() { delete fObj; fObj = NULL; }
    T*      detach() { T* obj = fObj; fObj = NULL; return obj; }

private:
    T*  fObj;
    bool fDeleteWhenDone;
};

template <typename T> class SkAutoTDeleteArray : SkNoncopyable {
public:
    SkAutoTDeleteArray(T array[]) : fArray(array) {}
    ~SkAutoTDeleteArray() { delete[] fArray; }

    T*      get() const { return fArray; }
    void    free() { delete[] fArray; fArray = NULL; }
    T*      detach() { T* array = fArray; fArray = NULL; return array; }

private:
    T*  fArray;
};

/** Allocate an array of T elements, and free the array in the destructor
 */
template <typename T> class SkAutoTArray : SkNoncopyable {
public:
    /** Allocate count number of T elements
     */
    SkAutoTArray(size_t count) {
        fArray = NULL;
        if (count) {
            fArray = new T[count];
        }
        SkDEBUGCODE(fCount = count;)
    }

    ~SkAutoTArray() {
        delete[] fArray;
    }

    /** Return the array of T elements. Will be NULL if count == 0
     */
    T* get() const { return fArray; }
    
    /** Return the nth element in the array
     */
    T&  operator[](int index) const {
        SkASSERT((unsigned)index < fCount);
        return fArray[index];
    }

private:
    T*  fArray;
    SkDEBUGCODE(size_t fCount;)
};

/** Wraps SkAutoTArray, with room for up to N elements preallocated
 */
template <size_t N, typename T> class SkAutoSTArray : SkNoncopyable {
public:
    /** Allocate count number of T elements
     */
    SkAutoSTArray(size_t count) {
        if (count > N) {
            fArray = new T[count];
        } else if (count) {
            fArray = new (fStorage) T[count];
        } else {
            fArray = NULL;
        }
        fCount = count;
    }
    
    ~SkAutoSTArray() {
        if (fCount > N) {
            delete[] fArray;
        } else {
            T* start = fArray;
            T* iter = start + fCount;
            while (iter > start) {
                (--iter)->~T();
            }
        }
    }
    
    /** Return the number of T elements in the array
     */
    size_t count() const { return fCount; }
    
    /** Return the array of T elements. Will be NULL if count == 0
     */
    T* get() const { return fArray; }
    
    /** Return the nth element in the array
     */
    T&  operator[](int index) const {
        SkASSERT((unsigned)index < fCount);
        return fArray[index];
    }
    
private:
    size_t  fCount;
    T*      fArray;
    // since we come right after fArray, fStorage should be properly aligned
    char    fStorage[N * sizeof(T)];
};

/** Allocate a temp array on the stack/heap.
    Does NOT call any constructors/destructors on T (i.e. T must be POD)
*/
template <typename T> class SkAutoTMalloc : SkNoncopyable {
public:
    SkAutoTMalloc(size_t count) {
        fPtr = (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW | SK_MALLOC_TEMP);
    }

    ~SkAutoTMalloc() {
        sk_free(fPtr);
    }

    // doesn't preserve contents
    void reset (size_t count) {
        sk_free(fPtr);
        fPtr = fPtr = (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW | SK_MALLOC_TEMP);
    }

    T* get() const { return fPtr; }

    operator T*() {
        return fPtr;
    }

    operator const T*() const {
        return fPtr;
    }

    T& operator[](int index) {
        return fPtr[index];
    }

    const T& operator[](int index) const {
        return fPtr[index];
    }

private:
    T*  fPtr;
};

template <size_t N, typename T> class SK_API SkAutoSTMalloc : SkNoncopyable {
public:
    SkAutoSTMalloc(size_t count) {
        if (count <= N) {
            fPtr = fTStorage;
        } else {
            fPtr = (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW | SK_MALLOC_TEMP);
        }
    }

    ~SkAutoSTMalloc() {
        if (fPtr != fTStorage) {
            sk_free(fPtr);
        }
    }

    // doesn't preserve contents
    void reset(size_t count) {
        if (fPtr != fTStorage) {
            sk_free(fPtr);
        }
        if (count <= N) {
            fPtr = fTStorage;
        } else {
            fPtr = (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW | SK_MALLOC_TEMP);
        }
    }

    T* get() const { return fPtr; }

    operator T*() {
        return fPtr;
    }

    operator const T*() const {
        return fPtr;
    }

    T& operator[](int index) {
        return fPtr[index];
    }

    const T& operator[](int index) const {
        return fPtr[index];
    }

private:
    T*          fPtr;
    union {
        uint32_t    fStorage32[(N*sizeof(T) + 3) >> 2];
        T           fTStorage[1];   // do NOT want to invoke T::T()
    };
};

/**
 * Reserves memory that is aligned on double and pointer boundaries.
 * Hopefully this is sufficient for all practical purposes.
 */
template <size_t N> class SkAlignedSStorage : SkNoncopyable {
public:
    void* get() { return fData; }
private:
    union {
        void*   fPtr;
        double  fDouble;
        char    fData[N];
    };
};

/**
 * Reserves memory that is aligned on double and pointer boundaries.
 * Hopefully this is sufficient for all practical purposes. Otherwise,
 * we have to do some arcane trickery to determine alignment of non-POD
 * types. Lifetime of the memory is the lifetime of the object.
 */
template <int N, typename T> class SkAlignedSTStorage : SkNoncopyable {
public:
    /**
     * Returns void* because this object does not initialize the
     * memory. Use placement new for types that require a cons.
     */
    void* get() { return fStorage.get(); }
private:
    SkAlignedSStorage<sizeof(T)*N> fStorage;
};

#endif