1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
|
/* libs/graphics/sgl/SkScan_AntiPath.cpp
**
** Copyright 2006, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#include "SkScanPriv.h"
#include "SkPath.h"
#include "SkMatrix.h"
#include "SkBlitter.h"
#include "SkRegion.h"
#include "SkAntiRun.h"
#define SHIFT 2
#define SCALE (1 << SHIFT)
#define MASK (SCALE - 1)
///////////////////////////////////////////////////////////////////////////////////////////
class BaseSuperBlitter : public SkBlitter {
public:
BaseSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
const SkRegion& clip);
virtual void blitAntiH(int x, int y, const SkAlpha antialias[],
const int16_t runs[]) {
SkASSERT(!"How did I get here?");
}
virtual void blitV(int x, int y, int height, SkAlpha alpha) {
SkASSERT(!"How did I get here?");
}
virtual void blitRect(int x, int y, int width, int height) {
SkASSERT(!"How did I get here?");
}
protected:
SkBlitter* fRealBlitter;
int fCurrIY;
int fWidth, fLeft, fSuperLeft;
SkDEBUGCODE(int fCurrX;)
SkDEBUGCODE(int fCurrY;)
};
BaseSuperBlitter::BaseSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
const SkRegion& clip) {
fRealBlitter = realBlitter;
// take the union of the ir bounds and clip, since we may be called with an
// inverse filltype
const int left = SkMin32(ir.fLeft, clip.getBounds().fLeft);
const int right = SkMax32(ir.fRight, clip.getBounds().fRight);
fLeft = left;
fSuperLeft = left << SHIFT;
fWidth = right - left;
fCurrIY = -1;
SkDEBUGCODE(fCurrX = -1; fCurrY = -1;)
}
class SuperBlitter : public BaseSuperBlitter {
public:
SuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
const SkRegion& clip);
virtual ~SuperBlitter() {
this->flush();
sk_free(fRuns.fRuns);
}
void flush();
virtual void blitH(int x, int y, int width);
private:
SkAlphaRuns fRuns;
};
SuperBlitter::SuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
const SkRegion& clip)
: BaseSuperBlitter(realBlitter, ir, clip) {
const int width = fWidth;
// extra one to store the zero at the end
fRuns.fRuns = (int16_t*)sk_malloc_throw((width + 1 + (width + 2)/2) * sizeof(int16_t));
fRuns.fAlpha = (uint8_t*)(fRuns.fRuns + width + 1);
fRuns.reset(width);
}
void SuperBlitter::flush()
{
if (fCurrIY >= 0)
{
if (!fRuns.empty())
{
// SkDEBUGCODE(fRuns.dump();)
fRealBlitter->blitAntiH(fLeft, fCurrIY, fRuns.fAlpha, fRuns.fRuns);
fRuns.reset(fWidth);
}
fCurrIY = -1;
SkDEBUGCODE(fCurrX = -1;)
}
}
static inline int coverage_to_alpha(int aa)
{
aa <<= 8 - 2*SHIFT;
aa -= aa >> (8 - SHIFT - 1);
return aa;
}
#define SUPER_Mask ((1 << SHIFT) - 1)
void SuperBlitter::blitH(int x, int y, int width)
{
int iy = y >> SHIFT;
SkASSERT(iy >= fCurrIY);
x -= fSuperLeft;
// hack, until I figure out why my cubics (I think) go beyond the bounds
if (x < 0)
{
width += x;
x = 0;
}
#ifdef SK_DEBUG
SkASSERT(y >= fCurrY);
SkASSERT(y != fCurrY || x >= fCurrX);
fCurrY = y;
#endif
if (iy != fCurrIY) // new scanline
{
this->flush();
fCurrIY = iy;
}
// we sub 1 from maxValue 1 time for each block, so that we don't
// hit 256 as a summed max, but 255.
// int maxValue = (1 << (8 - SHIFT)) - (((y & MASK) + 1) >> SHIFT);
#if 0
SkAntiRun<SHIFT> arun;
arun.set(x, x + width);
fRuns.add(x >> SHIFT, arun.getStartAlpha(), arun.getMiddleCount(), arun.getStopAlpha(), maxValue);
#else
{
int start = x;
int stop = x + width;
SkASSERT(start >= 0 && stop > start);
int fb = start & SUPER_Mask;
int fe = stop & SUPER_Mask;
int n = (stop >> SHIFT) - (start >> SHIFT) - 1;
if (n < 0)
{
fb = fe - fb;
n = 0;
fe = 0;
}
else
{
if (fb == 0)
n += 1;
else
fb = (1 << SHIFT) - fb;
}
fRuns.add(x >> SHIFT, coverage_to_alpha(fb), n, coverage_to_alpha(fe),
(1 << (8 - SHIFT)) - (((y & MASK) + 1) >> SHIFT));
}
#endif
#ifdef SK_DEBUG
fRuns.assertValid(y & MASK, (1 << (8 - SHIFT)));
fCurrX = x + width;
#endif
}
///////////////////////////////////////////////////////////////////////////////
class MaskSuperBlitter : public BaseSuperBlitter {
public:
MaskSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
const SkRegion& clip);
virtual ~MaskSuperBlitter() {
fRealBlitter->blitMask(fMask, fClipRect);
}
virtual void blitH(int x, int y, int width);
static bool CanHandleRect(const SkIRect& bounds)
{
int width = bounds.width();
int rb = SkAlign4(width);
return (width <= MaskSuperBlitter::kMAX_WIDTH) &&
(rb * bounds.height() <= MaskSuperBlitter::kMAX_STORAGE);
}
private:
enum {
kMAX_WIDTH = 32, // so we don't try to do very wide things, where the RLE blitter would be faster
kMAX_STORAGE = 1024
};
SkMask fMask;
SkIRect fClipRect;
// we add 1 because add_aa_span can write (unchanged) 1 extra byte at the end, rather than
// perform a test to see if stopAlpha != 0
uint32_t fStorage[(kMAX_STORAGE >> 2) + 1];
};
MaskSuperBlitter::MaskSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
const SkRegion& clip)
: BaseSuperBlitter(realBlitter, ir, clip) {
SkASSERT(CanHandleRect(ir));
fMask.fImage = (uint8_t*)fStorage;
fMask.fBounds = ir;
fMask.fRowBytes = ir.width();
fMask.fFormat = SkMask::kA8_Format;
fClipRect = ir;
fClipRect.intersect(clip.getBounds());
// For valgrind, write 1 extra byte at the end so we don't read
// uninitialized memory. See comment in add_aa_span and fStorage[].
memset(fStorage, 0, fMask.fBounds.height() * fMask.fRowBytes + 1);
}
static void add_aa_span(uint8_t* alpha, U8CPU startAlpha)
{
/* I should be able to just add alpha[x] + startAlpha.
However, if the trailing edge of the previous span and the leading
edge of the current span round to the same super-sampled x value,
I might overflow to 256 with this add, hence the funny subtract.
*/
unsigned tmp = *alpha + startAlpha;
SkASSERT(tmp <= 256);
*alpha = SkToU8(tmp - (tmp >> 8));
}
static void add_aa_span(uint8_t* alpha, U8CPU startAlpha, int middleCount, U8CPU stopAlpha, U8CPU maxValue)
{
SkASSERT(middleCount >= 0);
/* I should be able to just add alpha[x] + startAlpha.
However, if the trailing edge of the previous span and the leading
edge of the current span round to the same super-sampled x value,
I might overflow to 256 with this add, hence the funny subtract.
*/
unsigned tmp = *alpha + startAlpha;
SkASSERT(tmp <= 256);
*alpha++ = SkToU8(tmp - (tmp >> 8));
while (--middleCount >= 0)
{
alpha[0] = SkToU8(alpha[0] + maxValue);
alpha += 1;
}
// potentially this can be off the end of our "legal" alpha values, but that
// only happens if stopAlpha is also 0. Rather than test for stopAlpha != 0
// every time (slow), we just do it, and ensure that we've allocated extra space
// (see the + 1 comment in fStorage[]
*alpha = SkToU8(*alpha + stopAlpha);
}
void MaskSuperBlitter::blitH(int x, int y, int width)
{
int iy = (y >> SHIFT);
SkASSERT(iy >= fMask.fBounds.fTop && iy < fMask.fBounds.fBottom);
iy -= fMask.fBounds.fTop; // make it relative to 0
#ifdef SK_DEBUG
{
int ix = x >> SHIFT;
SkASSERT(ix >= fMask.fBounds.fLeft && ix < fMask.fBounds.fRight);
}
#endif
x -= (fMask.fBounds.fLeft << SHIFT);
// hack, until I figure out why my cubics (I think) go beyond the bounds
if (x < 0)
{
width += x;
x = 0;
}
// we sub 1 from maxValue 1 time for each block, so that we don't
// hit 256 as a summed max, but 255.
// int maxValue = (1 << (8 - SHIFT)) - (((y & MASK) + 1) >> SHIFT);
uint8_t* row = fMask.fImage + iy * fMask.fRowBytes + (x >> SHIFT);
int start = x;
int stop = x + width;
SkASSERT(start >= 0 && stop > start);
int fb = start & SUPER_Mask;
int fe = stop & SUPER_Mask;
int n = (stop >> SHIFT) - (start >> SHIFT) - 1;
if (n < 0)
{
SkASSERT(row >= fMask.fImage);
SkASSERT(row < fMask.fImage + kMAX_STORAGE + 1);
add_aa_span(row, coverage_to_alpha(fe - fb));
}
else
{
fb = (1 << SHIFT) - fb;
SkASSERT(row >= fMask.fImage);
SkASSERT(row + n + 1 < fMask.fImage + kMAX_STORAGE + 1);
add_aa_span(row, coverage_to_alpha(fb), n, coverage_to_alpha(fe),
(1 << (8 - SHIFT)) - (((y & MASK) + 1) >> SHIFT));
}
#ifdef SK_DEBUG
fCurrX = x + width;
#endif
}
///////////////////////////////////////////////////////////////////////////////
/* Returns non-zero if (value << shift) overflows a short, which would mean
we could not shift it up and then convert to SkFixed.
i.e. is x expressible as signed (16-shift) bits?
*/
static int overflows_short_shift(int value, int shift) {
const int s = 16 + shift;
return (value << s >> s) - value;
}
void SkScan::AntiFillPath(const SkPath& path, const SkRegion& clip,
SkBlitter* blitter) {
if (clip.isEmpty()) {
return;
}
SkIRect ir;
path.getBounds().roundOut(&ir);
if (ir.isEmpty()) {
return;
}
// use bit-or since we expect all to pass, so no need to go slower with
// a short-circuiting logical-or
if (overflows_short_shift(ir.fLeft, SHIFT) |
overflows_short_shift(ir.fRight, SHIFT) |
overflows_short_shift(ir.fTop, SHIFT) |
overflows_short_shift(ir.fBottom, SHIFT)) {
// can't supersample, so draw w/o antialiasing
SkScan::FillPath(path, clip, blitter);
return;
}
SkScanClipper clipper(blitter, &clip, ir);
const SkIRect* clipRect = clipper.getClipRect();
if (clipper.getBlitter() == NULL) { // clipped out
if (path.isInverseFillType()) {
blitter->blitRegion(clip);
}
return;
}
// now use the (possibly wrapped) blitter
blitter = clipper.getBlitter();
if (path.isInverseFillType()) {
sk_blit_above_and_below(blitter, ir, clip);
}
SkIRect superRect, *superClipRect = NULL;
if (clipRect)
{
superRect.set( clipRect->fLeft << SHIFT, clipRect->fTop << SHIFT,
clipRect->fRight << SHIFT, clipRect->fBottom << SHIFT);
superClipRect = &superRect;
}
// MaskSuperBlitter can't handle drawing outside of ir, so we can't use it
// if we're an inverse filltype
if (!path.isInverseFillType() && MaskSuperBlitter::CanHandleRect(ir))
{
MaskSuperBlitter superBlit(blitter, ir, clip);
sk_fill_path(path, superClipRect, &superBlit, ir.fBottom, SHIFT, clip);
}
else
{
SuperBlitter superBlit(blitter, ir, clip);
sk_fill_path(path, superClipRect, &superBlit, ir.fBottom, SHIFT, clip);
}
}
|