1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
|
/*
* Copyright 2012 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBlitMask.h"
#include "SkBlitRow.h"
#include "SkColorPriv.h"
#include "SkDither.h"
#include "SkUtils.h"
#include "SkCachePreload_arm.h"
#if defined(__ARM_HAVE_NEON)
#include <arm_neon.h>
#endif
extern "C" void S32A_Opaque_BlitRow32_arm(SkPMColor* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src,
int count,
U8CPU alpha);
extern "C" void S32A_Blend_BlitRow32_arm_neon(SkPMColor* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src,
int count,
U8CPU alpha);
#if defined(__ARM_HAVE_NEON) && defined(SK_CPU_LENDIAN)
static void S32A_D565_Opaque_neon(uint16_t* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src, int count,
U8CPU alpha, int /*x*/, int /*y*/) {
SkASSERT(255 == alpha);
if (count >= 8) {
uint16_t* SK_RESTRICT keep_dst;
asm volatile (
"ands ip, %[count], #7 \n\t"
"vmov.u8 d31, #1<<7 \n\t"
"vld1.16 {q12}, [%[dst]] \n\t"
"vld4.8 {d0-d3}, [%[src]] \n\t"
// Thumb does not support the standard ARM conditional
// instructions but instead requires the 'it' instruction
// to signal conditional execution
"it eq \n\t"
"moveq ip, #8 \n\t"
"mov %[keep_dst], %[dst] \n\t"
"add %[src], %[src], ip, LSL#2 \n\t"
"add %[dst], %[dst], ip, LSL#1 \n\t"
"subs %[count], %[count], ip \n\t"
"b 9f \n\t"
// LOOP
"2: \n\t"
"vld1.16 {q12}, [%[dst]]! \n\t"
"vld4.8 {d0-d3}, [%[src]]! \n\t"
"vst1.16 {q10}, [%[keep_dst]] \n\t"
"sub %[keep_dst], %[dst], #8*2 \n\t"
"subs %[count], %[count], #8 \n\t"
"9: \n\t"
"pld [%[dst],#32] \n\t"
// expand 0565 q12 to 8888 {d4-d7}
"vmovn.u16 d4, q12 \n\t"
"vshr.u16 q11, q12, #5 \n\t"
"vshr.u16 q10, q12, #6+5 \n\t"
"vmovn.u16 d5, q11 \n\t"
"vmovn.u16 d6, q10 \n\t"
"vshl.u8 d4, d4, #3 \n\t"
"vshl.u8 d5, d5, #2 \n\t"
"vshl.u8 d6, d6, #3 \n\t"
"vmovl.u8 q14, d31 \n\t"
"vmovl.u8 q13, d31 \n\t"
"vmovl.u8 q12, d31 \n\t"
// duplicate in 4/2/1 & 8pix vsns
"vmvn.8 d30, d3 \n\t"
"vmlal.u8 q14, d30, d6 \n\t"
"vmlal.u8 q13, d30, d5 \n\t"
"vmlal.u8 q12, d30, d4 \n\t"
"vshr.u16 q8, q14, #5 \n\t"
"vshr.u16 q9, q13, #6 \n\t"
"vaddhn.u16 d6, q14, q8 \n\t"
"vshr.u16 q8, q12, #5 \n\t"
"vaddhn.u16 d5, q13, q9 \n\t"
"vqadd.u8 d6, d6, d0 \n\t" // moved up
"vaddhn.u16 d4, q12, q8 \n\t"
// intentionally don't calculate alpha
// result in d4-d6
"vqadd.u8 d5, d5, d1 \n\t"
"vqadd.u8 d4, d4, d2 \n\t"
// pack 8888 {d4-d6} to 0565 q10
"vshll.u8 q10, d6, #8 \n\t"
"vshll.u8 q3, d5, #8 \n\t"
"vshll.u8 q2, d4, #8 \n\t"
"vsri.u16 q10, q3, #5 \n\t"
"vsri.u16 q10, q2, #11 \n\t"
"bne 2b \n\t"
"1: \n\t"
"vst1.16 {q10}, [%[keep_dst]] \n\t"
: [count] "+r" (count)
: [dst] "r" (dst), [keep_dst] "r" (keep_dst), [src] "r" (src)
: "ip", "cc", "memory", "d0","d1","d2","d3","d4","d5","d6","d7",
"d16","d17","d18","d19","d20","d21","d22","d23","d24","d25","d26","d27","d28","d29",
"d30","d31"
);
}
else
{ // handle count < 8
uint16_t* SK_RESTRICT keep_dst;
asm volatile (
"vmov.u8 d31, #1<<7 \n\t"
"mov %[keep_dst], %[dst] \n\t"
"tst %[count], #4 \n\t"
"beq 14f \n\t"
"vld1.16 {d25}, [%[dst]]! \n\t"
"vld1.32 {q1}, [%[src]]! \n\t"
"14: \n\t"
"tst %[count], #2 \n\t"
"beq 12f \n\t"
"vld1.32 {d24[1]}, [%[dst]]! \n\t"
"vld1.32 {d1}, [%[src]]! \n\t"
"12: \n\t"
"tst %[count], #1 \n\t"
"beq 11f \n\t"
"vld1.16 {d24[1]}, [%[dst]]! \n\t"
"vld1.32 {d0[1]}, [%[src]]! \n\t"
"11: \n\t"
// unzips achieve the same as a vld4 operation
"vuzpq.u16 q0, q1 \n\t"
"vuzp.u8 d0, d1 \n\t"
"vuzp.u8 d2, d3 \n\t"
// expand 0565 q12 to 8888 {d4-d7}
"vmovn.u16 d4, q12 \n\t"
"vshr.u16 q11, q12, #5 \n\t"
"vshr.u16 q10, q12, #6+5 \n\t"
"vmovn.u16 d5, q11 \n\t"
"vmovn.u16 d6, q10 \n\t"
"vshl.u8 d4, d4, #3 \n\t"
"vshl.u8 d5, d5, #2 \n\t"
"vshl.u8 d6, d6, #3 \n\t"
"vmovl.u8 q14, d31 \n\t"
"vmovl.u8 q13, d31 \n\t"
"vmovl.u8 q12, d31 \n\t"
// duplicate in 4/2/1 & 8pix vsns
"vmvn.8 d30, d3 \n\t"
"vmlal.u8 q14, d30, d6 \n\t"
"vmlal.u8 q13, d30, d5 \n\t"
"vmlal.u8 q12, d30, d4 \n\t"
"vshr.u16 q8, q14, #5 \n\t"
"vshr.u16 q9, q13, #6 \n\t"
"vaddhn.u16 d6, q14, q8 \n\t"
"vshr.u16 q8, q12, #5 \n\t"
"vaddhn.u16 d5, q13, q9 \n\t"
"vqadd.u8 d6, d6, d0 \n\t" // moved up
"vaddhn.u16 d4, q12, q8 \n\t"
// intentionally don't calculate alpha
// result in d4-d6
"vqadd.u8 d5, d5, d1 \n\t"
"vqadd.u8 d4, d4, d2 \n\t"
// pack 8888 {d4-d6} to 0565 q10
"vshll.u8 q10, d6, #8 \n\t"
"vshll.u8 q3, d5, #8 \n\t"
"vshll.u8 q2, d4, #8 \n\t"
"vsri.u16 q10, q3, #5 \n\t"
"vsri.u16 q10, q2, #11 \n\t"
// store
"tst %[count], #4 \n\t"
"beq 24f \n\t"
"vst1.16 {d21}, [%[keep_dst]]! \n\t"
"24: \n\t"
"tst %[count], #2 \n\t"
"beq 22f \n\t"
"vst1.32 {d20[1]}, [%[keep_dst]]! \n\t"
"22: \n\t"
"tst %[count], #1 \n\t"
"beq 21f \n\t"
"vst1.16 {d20[1]}, [%[keep_dst]]! \n\t"
"21: \n\t"
: [count] "+r" (count)
: [dst] "r" (dst), [keep_dst] "r" (keep_dst), [src] "r" (src)
: "ip", "cc", "memory", "d0","d1","d2","d3","d4","d5","d6","d7",
"d16","d17","d18","d19","d20","d21","d22","d23","d24","d25","d26","d27","d28","d29",
"d30","d31"
);
}
}
static void S32A_D565_Blend_neon(uint16_t* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src, int count,
U8CPU alpha, int /*x*/, int /*y*/) {
U8CPU alpha_for_asm = alpha;
asm volatile (
/* This code implements a Neon version of S32A_D565_Blend. The output differs from
* the original in two respects:
* 1. The results have a few mismatches compared to the original code. These mismatches
* never exceed 1. It's possible to improve accuracy vs. a floating point
* implementation by introducing rounding right shifts (vrshr) for the final stage.
* Rounding is not present in the code below, because although results would be closer
* to a floating point implementation, the number of mismatches compared to the
* original code would be far greater.
* 2. On certain inputs, the original code can overflow, causing colour channels to
* mix. Although the Neon code can also overflow, it doesn't allow one colour channel
* to affect another.
*/
#if 1
/* reflects SkAlpha255To256()'s change from a+a>>7 to a+1 */
"add %[alpha], %[alpha], #1 \n\t" // adjust range of alpha 0-256
#else
"add %[alpha], %[alpha], %[alpha], lsr #7 \n\t" // adjust range of alpha 0-256
#endif
"vmov.u16 q3, #255 \n\t" // set up constant
"movs r4, %[count], lsr #3 \n\t" // calc. count>>3
"vmov.u16 d2[0], %[alpha] \n\t" // move alpha to Neon
"beq 2f \n\t" // if count8 == 0, exit
"vmov.u16 q15, #0x1f \n\t" // set up blue mask
"1: \n\t"
"vld1.u16 {d0, d1}, [%[dst]] \n\t" // load eight dst RGB565 pixels
"subs r4, r4, #1 \n\t" // decrement loop counter
"vld4.u8 {d24, d25, d26, d27}, [%[src]]! \n\t" // load eight src ABGR32 pixels
// and deinterleave
"vshl.u16 q9, q0, #5 \n\t" // shift green to top of lanes
"vand q10, q0, q15 \n\t" // extract blue
"vshr.u16 q8, q0, #11 \n\t" // extract red
"vshr.u16 q9, q9, #10 \n\t" // extract green
// dstrgb = {q8, q9, q10}
"vshr.u8 d24, d24, #3 \n\t" // shift red to 565 range
"vshr.u8 d25, d25, #2 \n\t" // shift green to 565 range
"vshr.u8 d26, d26, #3 \n\t" // shift blue to 565 range
"vmovl.u8 q11, d24 \n\t" // widen red to 16 bits
"vmovl.u8 q12, d25 \n\t" // widen green to 16 bits
"vmovl.u8 q14, d27 \n\t" // widen alpha to 16 bits
"vmovl.u8 q13, d26 \n\t" // widen blue to 16 bits
// srcrgba = {q11, q12, q13, q14}
"vmul.u16 q2, q14, d2[0] \n\t" // sa * src_scale
"vmul.u16 q11, q11, d2[0] \n\t" // red result = src_red * src_scale
"vmul.u16 q12, q12, d2[0] \n\t" // grn result = src_grn * src_scale
"vmul.u16 q13, q13, d2[0] \n\t" // blu result = src_blu * src_scale
"vshr.u16 q2, q2, #8 \n\t" // sa * src_scale >> 8
"vsub.u16 q2, q3, q2 \n\t" // 255 - (sa * src_scale >> 8)
// dst_scale = q2
"vmla.u16 q11, q8, q2 \n\t" // red result += dst_red * dst_scale
"vmla.u16 q12, q9, q2 \n\t" // grn result += dst_grn * dst_scale
"vmla.u16 q13, q10, q2 \n\t" // blu result += dst_blu * dst_scale
#if 1
// trying for a better match with SkDiv255Round(a)
// C alg is: a+=128; (a+a>>8)>>8
// we'll use just a rounding shift [q2 is available for scratch]
"vrshr.u16 q11, q11, #8 \n\t" // shift down red
"vrshr.u16 q12, q12, #8 \n\t" // shift down green
"vrshr.u16 q13, q13, #8 \n\t" // shift down blue
#else
// arm's original "truncating divide by 256"
"vshr.u16 q11, q11, #8 \n\t" // shift down red
"vshr.u16 q12, q12, #8 \n\t" // shift down green
"vshr.u16 q13, q13, #8 \n\t" // shift down blue
#endif
"vsli.u16 q13, q12, #5 \n\t" // insert green into blue
"vsli.u16 q13, q11, #11 \n\t" // insert red into green/blue
"vst1.16 {d26, d27}, [%[dst]]! \n\t" // write pixel back to dst, update ptr
"bne 1b \n\t" // if counter != 0, loop
"2: \n\t" // exit
: [src] "+r" (src), [dst] "+r" (dst), [count] "+r" (count), [alpha] "+r" (alpha_for_asm)
:
: "cc", "memory", "r4", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23", "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31"
);
count &= 7;
if (count > 0) {
do {
SkPMColor sc = *src++;
if (sc) {
uint16_t dc = *dst;
unsigned dst_scale = 255 - SkMulDiv255Round(SkGetPackedA32(sc), alpha);
unsigned dr = SkMulS16(SkPacked32ToR16(sc), alpha) + SkMulS16(SkGetPackedR16(dc), dst_scale);
unsigned dg = SkMulS16(SkPacked32ToG16(sc), alpha) + SkMulS16(SkGetPackedG16(dc), dst_scale);
unsigned db = SkMulS16(SkPacked32ToB16(sc), alpha) + SkMulS16(SkGetPackedB16(dc), dst_scale);
*dst = SkPackRGB16(SkDiv255Round(dr), SkDiv255Round(dg), SkDiv255Round(db));
}
dst += 1;
} while (--count != 0);
}
}
/* dither matrix for Neon, derived from gDitherMatrix_3Bit_16.
* each dither value is spaced out into byte lanes, and repeated
* to allow an 8-byte load from offsets 0, 1, 2 or 3 from the
* start of each row.
*/
static const uint8_t gDitherMatrix_Neon[48] = {
0, 4, 1, 5, 0, 4, 1, 5, 0, 4, 1, 5,
6, 2, 7, 3, 6, 2, 7, 3, 6, 2, 7, 3,
1, 5, 0, 4, 1, 5, 0, 4, 1, 5, 0, 4,
7, 3, 6, 2, 7, 3, 6, 2, 7, 3, 6, 2,
};
static void S32_D565_Blend_Dither_neon(uint16_t *dst, const SkPMColor *src,
int count, U8CPU alpha, int x, int y)
{
/* select row and offset for dither array */
const uint8_t *dstart = &gDitherMatrix_Neon[(y&3)*12 + (x&3)];
/* rescale alpha to range 0 - 256 */
int scale = SkAlpha255To256(alpha);
asm volatile (
"vld1.8 {d31}, [%[dstart]] \n\t" // load dither values
"vshr.u8 d30, d31, #1 \n\t" // calc. green dither values
"vdup.16 d6, %[scale] \n\t" // duplicate scale into neon reg
"vmov.i8 d29, #0x3f \n\t" // set up green mask
"vmov.i8 d28, #0x1f \n\t" // set up blue mask
"1: \n\t"
"vld4.8 {d0, d1, d2, d3}, [%[src]]! \n\t" // load 8 pixels and split into argb
"vshr.u8 d22, d0, #5 \n\t" // calc. red >> 5
"vshr.u8 d23, d1, #6 \n\t" // calc. green >> 6
"vshr.u8 d24, d2, #5 \n\t" // calc. blue >> 5
"vaddl.u8 q8, d0, d31 \n\t" // add in dither to red and widen
"vaddl.u8 q9, d1, d30 \n\t" // add in dither to green and widen
"vaddl.u8 q10, d2, d31 \n\t" // add in dither to blue and widen
"vsubw.u8 q8, q8, d22 \n\t" // sub shifted red from result
"vsubw.u8 q9, q9, d23 \n\t" // sub shifted green from result
"vsubw.u8 q10, q10, d24 \n\t" // sub shifted blue from result
"vshrn.i16 d22, q8, #3 \n\t" // shift right and narrow to 5 bits
"vshrn.i16 d23, q9, #2 \n\t" // shift right and narrow to 6 bits
"vshrn.i16 d24, q10, #3 \n\t" // shift right and narrow to 5 bits
// load 8 pixels from dst, extract rgb
"vld1.16 {d0, d1}, [%[dst]] \n\t" // load 8 pixels
"vshrn.i16 d17, q0, #5 \n\t" // shift green down to bottom 6 bits
"vmovn.i16 d18, q0 \n\t" // narrow to get blue as bytes
"vshr.u16 q0, q0, #11 \n\t" // shift down to extract red
"vand d17, d17, d29 \n\t" // and green with green mask
"vand d18, d18, d28 \n\t" // and blue with blue mask
"vmovn.i16 d16, q0 \n\t" // narrow to get red as bytes
// src = {d22 (r), d23 (g), d24 (b)}
// dst = {d16 (r), d17 (g), d18 (b)}
// subtract dst from src and widen
"vsubl.s8 q0, d22, d16 \n\t" // subtract red src from dst
"vsubl.s8 q1, d23, d17 \n\t" // subtract green src from dst
"vsubl.s8 q2, d24, d18 \n\t" // subtract blue src from dst
// multiply diffs by scale and shift
"vmul.i16 q0, q0, d6[0] \n\t" // multiply red by scale
"vmul.i16 q1, q1, d6[0] \n\t" // multiply blue by scale
"vmul.i16 q2, q2, d6[0] \n\t" // multiply green by scale
"subs %[count], %[count], #8 \n\t" // decrement loop counter
"vshrn.i16 d0, q0, #8 \n\t" // shift down red by 8 and narrow
"vshrn.i16 d2, q1, #8 \n\t" // shift down green by 8 and narrow
"vshrn.i16 d4, q2, #8 \n\t" // shift down blue by 8 and narrow
// add dst to result
"vaddl.s8 q0, d0, d16 \n\t" // add dst to red
"vaddl.s8 q1, d2, d17 \n\t" // add dst to green
"vaddl.s8 q2, d4, d18 \n\t" // add dst to blue
// put result into 565 format
"vsli.i16 q2, q1, #5 \n\t" // shift up green and insert into blue
"vsli.i16 q2, q0, #11 \n\t" // shift up red and insert into blue
"vst1.16 {d4, d5}, [%[dst]]! \n\t" // store result
"bgt 1b \n\t" // loop if count > 0
: [src] "+r" (src), [dst] "+r" (dst), [count] "+r" (count)
: [dstart] "r" (dstart), [scale] "r" (scale)
: "cc", "memory", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23", "d24", "d28", "d29", "d30", "d31"
);
DITHER_565_SCAN(y);
while((count & 7) > 0)
{
SkPMColor c = *src++;
int dither = DITHER_VALUE(x);
int sr = SkGetPackedR32(c);
int sg = SkGetPackedG32(c);
int sb = SkGetPackedB32(c);
sr = SkDITHER_R32To565(sr, dither);
sg = SkDITHER_G32To565(sg, dither);
sb = SkDITHER_B32To565(sb, dither);
uint16_t d = *dst;
*dst++ = SkPackRGB16(SkAlphaBlend(sr, SkGetPackedR16(d), scale),
SkAlphaBlend(sg, SkGetPackedG16(d), scale),
SkAlphaBlend(sb, SkGetPackedB16(d), scale));
DITHER_INC_X(x);
count--;
}
}
#define S32A_D565_Opaque_PROC S32A_D565_Opaque_neon
#define S32A_D565_Blend_PROC S32A_D565_Blend_neon
#define S32_D565_Blend_Dither_PROC S32_D565_Blend_Dither_neon
#elif __ARM_ARCH__ >= 7 && !defined(SK_CPU_BENDIAN)
static void S32A_D565_Opaque_v7(uint16_t* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src, int count,
U8CPU alpha, int /*x*/, int /*y*/) {
SkASSERT(255 == alpha);
asm volatile (
"1: \n\t"
"ldr r3, [%[src]], #4 \n\t"
"cmp r3, #0xff000000 \n\t"
"blo 2f \n\t"
"and r4, r3, #0x0000f8 \n\t"
"and r5, r3, #0x00fc00 \n\t"
"and r6, r3, #0xf80000 \n\t"
"pld [r1, #32] \n\t"
"lsl r3, r4, #8 \n\t"
"orr r3, r3, r5, lsr #5 \n\t"
"orr r3, r3, r6, lsr #19 \n\t"
"subs %[count], %[count], #1 \n\t"
"strh r3, [%[dst]], #2 \n\t"
"bne 1b \n\t"
"b 4f \n\t"
"2: \n\t"
"lsrs r7, r3, #24 \n\t"
"beq 3f \n\t"
"ldrh r4, [%[dst]] \n\t"
"rsb r7, r7, #255 \n\t"
"and r6, r4, #0x001f \n\t"
"ubfx r5, r4, #5, #6 \n\t"
"pld [r0, #16] \n\t"
"lsr r4, r4, #11 \n\t"
"smulbb r6, r6, r7 \n\t"
"smulbb r5, r5, r7 \n\t"
"smulbb r4, r4, r7 \n\t"
"ubfx r7, r3, #16, #8 \n\t"
"ubfx ip, r3, #8, #8 \n\t"
"and r3, r3, #0xff \n\t"
"add r6, r6, #16 \n\t"
"add r5, r5, #32 \n\t"
"add r4, r4, #16 \n\t"
"add r6, r6, r6, lsr #5 \n\t"
"add r5, r5, r5, lsr #6 \n\t"
"add r4, r4, r4, lsr #5 \n\t"
"add r6, r7, r6, lsr #5 \n\t"
"add r5, ip, r5, lsr #6 \n\t"
"add r4, r3, r4, lsr #5 \n\t"
"lsr r6, r6, #3 \n\t"
"and r5, r5, #0xfc \n\t"
"and r4, r4, #0xf8 \n\t"
"orr r6, r6, r5, lsl #3 \n\t"
"orr r4, r6, r4, lsl #8 \n\t"
"strh r4, [%[dst]], #2 \n\t"
"pld [r1, #32] \n\t"
"subs %[count], %[count], #1 \n\t"
"bne 1b \n\t"
"b 4f \n\t"
"3: \n\t"
"subs %[count], %[count], #1 \n\t"
"add %[dst], %[dst], #2 \n\t"
"bne 1b \n\t"
"4: \n\t"
: [dst] "+r" (dst), [src] "+r" (src), [count] "+r" (count)
:
: "memory", "cc", "r3", "r4", "r5", "r6", "r7", "ip"
);
}
#define S32A_D565_Blend_PROC NULL
#define S32_D565_Blend_Dither_PROC NULL
#else
#define S32A_D565_Blend_PROC NULL
#define S32_D565_Blend_Dither_PROC NULL
#endif
/*
* Use neon version of BLIT assembly code from S32A_D565_Opaque_arm.S, where we process
* 16 pixels at-a-time and also optimize for alpha=255 case.
*/
#define S32A_D565_Opaque_PROC NULL
/* Don't have a special version that assumes each src is opaque, but our S32A
is still faster than the default, so use it here
*/
#define S32_D565_Opaque_PROC S32A_D565_Opaque_PROC
#define S32_D565_Blend_PROC S32A_D565_Blend_PROC
///////////////////////////////////////////////////////////////////////////////
#if defined(__ARM_HAVE_NEON) && defined(SK_CPU_LENDIAN) && defined(ENABLE_OPTIMIZED_S32A_BLITTERS)
/* External function in file S32A_Opaque_BlitRow32_neon.S */
extern "C" void S32A_Opaque_BlitRow32_neon(SkPMColor* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src,
int count, U8CPU alpha);
#define S32A_Opaque_BlitRow32_PROC S32A_Opaque_BlitRow32_neon
#elif defined(__ARM_HAVE_NEON) && defined(SK_CPU_LENDIAN) && defined(TEST_SRC_ALPHA)
static void S32A_Opaque_BlitRow32_neon_test_alpha(SkPMColor* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src,
int count, U8CPU alpha) {
SkASSERT(255 == alpha);
if (count <= 0)
return;
/* Use these to check if src is transparent or opaque */
const unsigned int ALPHA_OPAQ = 0xFF000000;
const unsigned int ALPHA_TRANS = 0x00FFFFFF;
#define UNROLL 4
const SkPMColor* SK_RESTRICT src_end = src + count - (UNROLL + 1);
const SkPMColor* SK_RESTRICT src_temp = src;
/* set up the NEON variables */
uint8x8_t alpha_mask;
static const uint8_t alpha_mask_setup[] = {3,3,3,3,7,7,7,7};
alpha_mask = vld1_u8(alpha_mask_setup);
uint8x8_t src_raw, dst_raw, dst_final;
uint8x8_t src_raw_2, dst_raw_2, dst_final_2;
uint8x8_t dst_cooked;
uint16x8_t dst_wide;
uint8x8_t alpha_narrow;
uint16x8_t alpha_wide;
/* choose the first processing type */
if( src >= src_end)
goto TAIL;
if(*src <= ALPHA_TRANS)
goto ALPHA_0;
if(*src >= ALPHA_OPAQ)
goto ALPHA_255;
/* fall-thru */
ALPHA_1_TO_254:
do {
/* get the source */
src_raw = vreinterpret_u8_u32(vld1_u32(src));
src_raw_2 = vreinterpret_u8_u32(vld1_u32(src+2));
/* get and hold the dst too */
dst_raw = vreinterpret_u8_u32(vld1_u32(dst));
dst_raw_2 = vreinterpret_u8_u32(vld1_u32(dst+2));
/* get the alphas spread out properly */
alpha_narrow = vtbl1_u8(src_raw, alpha_mask);
/* reflect SkAlpha255To256() semantics a+1 vs a+a>>7 */
/* we collapsed (255-a)+1 ... */
alpha_wide = vsubw_u8(vdupq_n_u16(256), alpha_narrow);
/* spread the dest */
dst_wide = vmovl_u8(dst_raw);
/* alpha mul the dest */
dst_wide = vmulq_u16 (dst_wide, alpha_wide);
dst_cooked = vshrn_n_u16(dst_wide, 8);
/* sum -- ignoring any byte lane overflows */
dst_final = vadd_u8(src_raw, dst_cooked);
alpha_narrow = vtbl1_u8(src_raw_2, alpha_mask);
/* reflect SkAlpha255To256() semantics a+1 vs a+a>>7 */
/* we collapsed (255-a)+1 ... */
alpha_wide = vsubw_u8(vdupq_n_u16(256), alpha_narrow);
/* spread the dest */
dst_wide = vmovl_u8(dst_raw_2);
/* alpha mul the dest */
dst_wide = vmulq_u16 (dst_wide, alpha_wide);
dst_cooked = vshrn_n_u16(dst_wide, 8);
/* sum -- ignoring any byte lane overflows */
dst_final_2 = vadd_u8(src_raw_2, dst_cooked);
vst1_u32(dst, vreinterpret_u32_u8(dst_final));
vst1_u32(dst+2, vreinterpret_u32_u8(dst_final_2));
src += UNROLL;
dst += UNROLL;
/* if 2 of the next pixels aren't between 1 and 254
it might make sense to go to the optimized loops */
if((src[0] <= ALPHA_TRANS && src[1] <= ALPHA_TRANS) || (src[0] >= ALPHA_OPAQ && src[1] >= ALPHA_OPAQ))
break;
} while(src < src_end);
if (src >= src_end)
goto TAIL;
if(src[0] >= ALPHA_OPAQ && src[1] >= ALPHA_OPAQ)
goto ALPHA_255;
/*fall-thru*/
ALPHA_0:
/*In this state, we know the current alpha is 0 and
we optimize for the next alpha also being zero. */
src_temp = src; //so we don't have to increment dst every time
do {
if(*(++src) > ALPHA_TRANS)
break;
if(*(++src) > ALPHA_TRANS)
break;
if(*(++src) > ALPHA_TRANS)
break;
if(*(++src) > ALPHA_TRANS)
break;
} while(src < src_end);
dst += (src - src_temp);
/* no longer alpha 0, so determine where to go next. */
if( src >= src_end)
goto TAIL;
if(*src >= ALPHA_OPAQ)
goto ALPHA_255;
else
goto ALPHA_1_TO_254;
ALPHA_255:
while((src[0] & src[1] & src[2] & src[3]) >= ALPHA_OPAQ) {
dst[0]=src[0];
dst[1]=src[1];
dst[2]=src[2];
dst[3]=src[3];
src+=UNROLL;
dst+=UNROLL;
if(src >= src_end)
goto TAIL;
}
//Handle remainder.
if(*src >= ALPHA_OPAQ) { *dst++ = *src++;
if(*src >= ALPHA_OPAQ) { *dst++ = *src++;
if(*src >= ALPHA_OPAQ) { *dst++ = *src++; }
}
}
if( src >= src_end)
goto TAIL;
if(*src <= ALPHA_TRANS)
goto ALPHA_0;
else
goto ALPHA_1_TO_254;
TAIL:
/* do any residual iterations */
src_end += UNROLL + 1; //goto the real end
while(src != src_end) {
if( *src != 0 ) {
if( *src >= ALPHA_OPAQ ) {
*dst = *src;
}
else {
*dst = SkPMSrcOver(*src, *dst);
}
}
src++;
dst++;
}
return;
}
#define S32A_Opaque_BlitRow32_PROC S32A_Opaque_BlitRow32_neon_test_alpha
#elif defined(__ARM_HAVE_NEON) && defined(SK_CPU_LENDIAN)
/*
* User S32A_Opaque_BlitRow32 function from S32A_Opaque_BlitRow32.S
*/
#if 0
static void S32A_Opaque_BlitRow32_neon(SkPMColor* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src,
int count, U8CPU alpha) {
SkASSERT(255 == alpha);
if (count > 0) {
uint8x8_t alpha_mask;
static const uint8_t alpha_mask_setup[] = {3,3,3,3,7,7,7,7};
alpha_mask = vld1_u8(alpha_mask_setup);
/* do the NEON unrolled code */
#define UNROLL 4
while (count >= UNROLL) {
uint8x8_t src_raw, dst_raw, dst_final;
uint8x8_t src_raw_2, dst_raw_2, dst_final_2;
/* get the source */
src_raw = vreinterpret_u8_u32(vld1_u32(src));
#if UNROLL > 2
src_raw_2 = vreinterpret_u8_u32(vld1_u32(src+2));
#endif
/* get and hold the dst too */
dst_raw = vreinterpret_u8_u32(vld1_u32(dst));
#if UNROLL > 2
dst_raw_2 = vreinterpret_u8_u32(vld1_u32(dst+2));
#endif
/* 1st and 2nd bits of the unrolling */
{
uint8x8_t dst_cooked;
uint16x8_t dst_wide;
uint8x8_t alpha_narrow;
uint16x8_t alpha_wide;
/* get the alphas spread out properly */
alpha_narrow = vtbl1_u8(src_raw, alpha_mask);
#if 1
/* reflect SkAlpha255To256() semantics a+1 vs a+a>>7 */
/* we collapsed (255-a)+1 ... */
alpha_wide = vsubw_u8(vdupq_n_u16(256), alpha_narrow);
#else
alpha_wide = vsubw_u8(vdupq_n_u16(255), alpha_narrow);
alpha_wide = vaddq_u16(alpha_wide, vshrq_n_u16(alpha_wide,7));
#endif
/* spread the dest */
dst_wide = vmovl_u8(dst_raw);
/* alpha mul the dest */
dst_wide = vmulq_u16 (dst_wide, alpha_wide);
dst_cooked = vshrn_n_u16(dst_wide, 8);
/* sum -- ignoring any byte lane overflows */
dst_final = vadd_u8(src_raw, dst_cooked);
}
#if UNROLL > 2
/* the 3rd and 4th bits of our unrolling */
{
uint8x8_t dst_cooked;
uint16x8_t dst_wide;
uint8x8_t alpha_narrow;
uint16x8_t alpha_wide;
alpha_narrow = vtbl1_u8(src_raw_2, alpha_mask);
#if 1
/* reflect SkAlpha255To256() semantics a+1 vs a+a>>7 */
/* we collapsed (255-a)+1 ... */
alpha_wide = vsubw_u8(vdupq_n_u16(256), alpha_narrow);
#else
alpha_wide = vsubw_u8(vdupq_n_u16(255), alpha_narrow);
alpha_wide = vaddq_u16(alpha_wide, vshrq_n_u16(alpha_wide,7));
#endif
/* spread the dest */
dst_wide = vmovl_u8(dst_raw_2);
/* alpha mul the dest */
dst_wide = vmulq_u16 (dst_wide, alpha_wide);
dst_cooked = vshrn_n_u16(dst_wide, 8);
/* sum -- ignoring any byte lane overflows */
dst_final_2 = vadd_u8(src_raw_2, dst_cooked);
}
#endif
vst1_u32(dst, vreinterpret_u32_u8(dst_final));
#if UNROLL > 2
vst1_u32(dst+2, vreinterpret_u32_u8(dst_final_2));
#endif
src += UNROLL;
dst += UNROLL;
count -= UNROLL;
}
#undef UNROLL
/* do any residual iterations */
while (--count >= 0) {
#ifdef TEST_SRC_ALPHA
SkPMColor sc = *src;
if (sc) {
unsigned srcA = SkGetPackedA32(sc);
SkPMColor result = sc;
if (srcA != 255) {
result = SkPMSrcOver(sc, *dst);
}
*dst = result;
}
#else
*dst = SkPMSrcOver(*src, *dst);
#endif
src += 1;
dst += 1;
}
}
}
#define S32A_Opaque_BlitRow32_PROC S32A_Opaque_BlitRow32_neon
#endif
/*
* Use asm version of BlitRow function. Neon instructions are
* used for armv7 targets.
*/
#define S32A_Opaque_BlitRow32_PROC S32A_Opaque_BlitRow32_arm
#elif defined (__ARM_ARCH__) /* #if defined(__ARM_HAVE_NEON) && defined... */
#if defined(TEST_SRC_ALPHA)
static void __attribute__((naked)) S32A_Opaque_BlitRow32_arm_test_alpha
(SkPMColor* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src,
int count, U8CPU alpha) {
/* Optimizes for alpha == 0, alpha == 255, and 1 < alpha < 255 cases individually */
/* Predicts that the next pixel will have the same alpha type as the current pixel */
asm volatile (
"\tSTMDB r13!, {r4-r12, r14} \n" /* saving r4-r12, lr on the stack */
/* we should not save r0-r3 according to ABI */
"\tCMP r2, #0 \n" /* if (count == 0) */
"\tBEQ 9f \n" /* go to EXIT */
"\tMOV r12, #0xff \n" /* load the 0xff mask in r12 */
"\tORR r12, r12, r12, LSL #16 \n" /* convert it to 0xff00ff in r12 */
"\tMOV r14, #255 \n" /* r14 = 255 */
/* will be used later for left-side comparison */
"\tADD r2, %[src], r2, LSL #2 \n" /* r2 points to last array element which can be used */
"\tSUB r2, r2, #16 \n" /* as a base for 4-way processing algorithm */
"\tCMP %[src], r2 \n" /* if our current [src] array pointer is bigger than */
"\tBGT 8f \n" /* calculated marker for 4-way -> */
/* use simple one-by-one processing */
/* START OF DISPATCHING BLOCK */
"\t0: \n"
"\tLDM %[src]!, {r3, r4, r5, r6} \n" /* 4-way loading of source values to r3-r6 */
"\tLSR r7, r3, #24 \n" /* if not all src alphas of 4-way block are equal -> */
"\tCMP r7, r4, LSR #24 \n"
"\tCMPEQ r7, r5, LSR #24 \n"
"\tCMPEQ r7, r6, LSR #24 \n"
"\tBNE 1f \n" /* -> go to general 4-way processing routine */
"\tCMP r14, r7 \n" /* if all src alphas are equal to 255 */
"\tBEQ 3f \n" /* go to alpha == 255 optimized routine */
"\tCMP r7, #0 \n" /* if all src alphas are equal to 0 */
"\tBEQ 6f \n" /* go to alpha == 0 optimized routine */
/* END OF DISPATCHING BLOCK */
/* START OF BLOCK OPTIMIZED FOR 0 < ALPHA < 255 */
"\t1: \n"
/* we do not have enough registers to make */
/* 4-way [dst] loading -> we are using 2 * 2-way */
"\tLDM %[dst], {r7, r8} \n" /* 1st 2-way loading of dst values to r7-r8 */
/* PROCESSING BLOCK 1 */
/* r3 = src, r7 = dst */
"\tLSR r11, r3, #24 \n" /* extracting alpha from source and storing to r11 */
"\tAND r9, r12, r7 \n" /* r9 = br masked by r12 (0xff00ff) */
"\tRSB r11, r11, #256 \n" /* subtracting the alpha from 255 -> r11 = scale */
"\tAND r10, r12, r7, LSR #8 \n" /* r10 = ag masked by r12 (0xff00ff) */
"\tMUL r9, r9, r11 \n" /* br = br * scale */
"\tAND r9, r12, r9, LSR #8 \n" /* lsr br by 8 and mask it */
"\tMUL r10, r10, r11 \n" /* ag = ag * scale */
"\tAND r10, r10, r12, LSL #8 \n" /* mask ag with reverse mask */
"\tORR r7, r9, r10 \n" /* br | ag */
"\tADD r7, r3, r7 \n" /* dst = src + calc dest(r8) */
/* PROCESSING BLOCK 2 */
/* r4 = src, r8 = dst */
"\tLSR r11, r4, #24 \n" /* see PROCESSING BLOCK 1 */
"\tAND r9, r12, r8 \n"
"\tRSB r11, r11, #256 \n"
"\tAND r10, r12, r8, LSR #8 \n"
"\tMUL r9, r9, r11 \n"
"\tAND r9, r12, r9, LSR #8 \n"
"\tMUL r10, r10, r11 \n"
"\tAND r10, r10, r12, LSL #8 \n"
"\tORR r8, r9, r10 \n"
"\tADD r8, r4, r8 \n"
"\tSTM %[dst]!, {r7, r8} \n" /* 1st 2-way storing of processed dst values */
"\tLDM %[dst], {r9, r10} \n" /* 2nd 2-way loading of dst values to r9-r10 */
/* PROCESSING BLOCK 3 */
/* r5 = src, r9 = dst */
"\tLSR r11, r5, #24 \n" /* see PROCESSING BLOCK 1 */
"\tAND r7, r12, r9 \n"
"\tRSB r11, r11, #256 \n"
"\tAND r8, r12, r9, LSR #8 \n"
"\tMUL r7, r7, r11 \n"
"\tAND r7, r12, r7, LSR #8 \n"
"\tMUL r8, r8, r11 \n"
"\tAND r8, r8, r12, LSL #8 \n"
"\tORR r9, r7, r8 \n"
"\tADD r9, r5, r9 \n"
/* PROCESSING BLOCK 4 */
/* r6 = src, r10 = dst */
"\tLSR r11, r6, #24 \n" /* see PROCESSING BLOCK 1 */
"\tAND r7, r12, r10 \n"
"\tRSB r11, r11, #256 \n"
"\tAND r8, r12, r10, LSR #8 \n"
"\tMUL r7, r7, r11 \n"
"\tAND r7, r12, r7, LSR #8 \n"
"\tMUL r8, r8, r11 \n"
"\tAND r8, r8, r12, LSL #8 \n"
"\tORR r10, r7, r8 \n"
"\tADD r10, r6, r10 \n"
"\tSTM %[dst]!, {r9, r10} \n" /* 2nd 2-way storing of processed dst values */
"\tCMP %[src], r2 \n" /* if our current [src] pointer <= calculated marker */
"\tBLE 0b \n" /* we could run 4-way processing -> go to dispatcher */
"\tBGT 8f \n" /* else -> use simple one-by-one processing */
/* END OF BLOCK OPTIMIZED FOR 0 < ALPHA < 255 */
/* START OF BLOCK OPTIMIZED FOR ALPHA == 255 */
"\t2: \n" /* ENTRY 1: LOADING [src] to registers */
"\tLDM %[src]!, {r3, r4, r5, r6} \n" /* 4-way loading of source values to r3-r6 */
"\tAND r7, r3, r4 \n" /* if not all alphas == 255 -> */
"\tAND r8, r5, r6 \n"
"\tAND r9, r7, r8 \n"
"\tCMP r14, r9, LSR #24 \n"
"\tBNE 4f \n" /* -> go to alpha == 0 check */
"\t3: \n" /* ENTRY 2: [src] already loaded by DISPATCHER */
"\tSTM %[dst]!, {r3, r4, r5, r6} \n" /* all alphas == 255 -> 4-way copy [src] to [dst] */
"\tCMP %[src], r2 \n" /* if our current [src] array pointer <= marker */
"\tBLE 2b \n" /* we could run 4-way processing */
/* because now we're in ALPHA == 255 state */
/* run next cycle with priority alpha == 255 checks */
"\tBGT 8f \n" /* if our current [src] array pointer > marker */
/* use simple one-by-one processing */
"\t4: \n"
"\tORR r7, r3, r4 \n" /* if not all alphas == 0 -> */
"\tORR r8, r5, r6 \n"
"\tORR r9, r7, r8 \n"
"\tLSRS r9, #24 \n"
"\tBNE 1b \n" /* -> go to general processing mode */
/* (we already checked for alpha == 255) */
"\tADD %[dst], %[dst], #16 \n" /* all src alphas == 0 -> do not change dst values */
"\tCMP %[src], r2 \n" /* if our current [src] array pointer <= marker */
"\tBLE 5f \n" /* we could run 4-way processing one more time */
/* because now we're in ALPHA == 0 state */
/* run next cycle with priority alpha == 0 checks */
"\tBGT 8f \n" /* if our current [src] array pointer > marker */
/* use simple one-by-one processing */
/* END OF BLOCK OPTIMIZED FOR ALPHA == 255 */
/* START OF BLOCK OPTIMIZED FOR ALPHA == 0 */
"\t5: \n" /* ENTRY 1: LOADING [src] to registers */
"\tLDM %[src]!, {r3, r4, r5, r6} \n" /* 4-way loading of source values to r3-r6 */
"\tORR r7, r3, r4 \n" /* if not all alphas == 0 -> */
"\tORR r8, r5, r6 \n"
"\tORR r9, r7, r8 \n"
"\tLSRS r9, #24 \n"
"\tBNE 7f \n" /* -> go to alpha == 255 check */
"\t6: \n" /* ENTRY 2: [src] already loaded by DISPATCHER */
"\tADD %[dst], %[dst], #16 \n" /* all src alphas == 0 -> do not change dst values */
"\tCMP %[src], r2 \n" /* if our current [src] array pointer <= marker */
"\tBLE 5b \n" /* we could run 4-way processing one more time */
/* because now we're in ALPHA == 0 state */
/* run next cycle with priority alpha == 0 checks */
"\tBGT 8f \n" /* if our current [src] array pointer > marker */
/* use simple one-by-one processing */
"\t7: \n"
"\tAND r7, r3, r4 \n" /* if not all alphas == 255 -> */
"\tAND r8, r5, r6 \n"
"\tAND r9, r7, r8 \n"
"\tCMP r14, r9, LSR #24 \n"
"\tBNE 1b \n" /* -> go to general processing mode */
/* (we already checked for alpha == 0) */
"\tSTM %[dst]!, {r3, r4, r5, r6} \n" /* all alphas == 255 -> 4-way copy [src] to [dst] */
"\tCMP %[src], r2 \n" /* if our current [src] array pointer <= marker */
"\tBLE 2b \n" /* we could run 4-way processing one more time */
/* because now we're in ALPHA == 255 state */
/* run next cycle with priority alpha == 255 checks */
"\tBGT 8f \n" /* if our current [src] array pointer > marker */
/* use simple one-by-one processing */
/* END OF BLOCK OPTIMIZED FOR ALPHA == 0 */
/* START OF TAIL BLOCK */
/* (used when array is too small to be processed with 4-way algorithm)*/
"\t8: \n"
"\tADD r2, r2, #16 \n" /* now r2 points to the element just after array */
/* we've done r2 = r2 - 16 at procedure start */
"\tCMP %[src], r2 \n" /* if our current [src] array pointer > final marker */
"\tBEQ 9f \n" /* goto EXIT */
/* TAIL PROCESSING BLOCK 1 */
"\tLDR r3, [%[src]], #4 \n" /* r3 = *src, src++ */
"\tLDR r7, [%[dst]] \n" /* r7 = *dst */
"\tLSR r11, r3, #24 \n" /* extracting alpha from source */
"\tAND r9, r12, r7 \n" /* r9 = br masked by r12 (0xff00ff) */
"\tRSB r11, r11, #256 \n" /* subtracting the alpha from 255 -> r11 = scale */
"\tAND r10, r12, r7, LSR #8 \n" /* r10 = ag masked by r12 (0xff00ff) */
"\tMUL r9, r9, r11 \n" /* br = br * scale */
"\tAND r9, r12, r9, LSR #8 \n" /* lsr br by 8 and mask it */
"\tMUL r10, r10, r11 \n" /* ag = ag * scale */
"\tAND r10, r10, r12, LSL #8 \n" /* mask ag with reverse mask */
"\tORR r7, r9, r10 \n" /* br | ag */
"\tADD r7, r3, r7 \n" /* dst = src + calc dest(r8) */
"\tSTR r7, [%[dst]], #4 \n" /* *dst = r7; dst++ */
"\tCMP %[src], r2 \n" /* if our current [src] array pointer > final marker */
"\tBEQ 9f \n" /* goto EXIT */
/* TAIL PROCESSING BLOCK 2 */
"\tLDR r3, [%[src]], #4 \n" /* see TAIL PROCESSING BLOCK 1 */
"\tLDR r7, [%[dst]] \n"
"\tLSR r11, r3, #24 \n"
"\tAND r9, r12, r7 \n"
"\tRSB r11, r11, #256 \n"
"\tAND r10, r12, r7, LSR #8 \n"
"\tMUL r9, r9, r11 \n"
"\tAND r9, r12, r9, LSR #8 \n"
"\tMUL r10, r10, r11 \n"
"\tAND r10, r10, r12, LSL #8 \n"
"\tORR r7, r9, r10 \n"
"\tADD r7, r3, r7 \n"
"\tSTR r7, [%[dst]], #4 \n"
"\tCMP %[src], r2 \n"
"\tBEQ 9f \n"
/* TAIL PROCESSING BLOCK 3 */
"\tLDR r3, [%[src]], #4 \n" /* see TAIL PROCESSING BLOCK 1 */
"\tLDR r7, [%[dst]] \n"
"\tLSR r11, r3, #24 \n"
"\tAND r9, r12, r7 \n"
"\tRSB r11, r11, #256 \n"
"\tAND r10, r12, r7, LSR #8 \n"
"\tMUL r9, r9, r11 \n"
"\tAND r9, r12, r9, LSR #8 \n"
"\tMUL r10, r10, r11 \n"
"\tAND r10, r10, r12, LSL #8 \n"
"\tORR r7, r9, r10 \n"
"\tADD r7, r3, r7 \n"
"\tSTR r7, [%[dst]], #4 \n"
/* END OF TAIL BLOCK */
"\t9: \n" /* EXIT */
"\tLDMIA r13!, {r4-r12, r14} \n" /* restoring r4-r12, lr from stack */
"\tBX lr \n" /* return */
: [dst] "+r" (dst), [src] "+r" (src)
:
: "cc", "r2", "r3", "memory"
);
}
#define S32A_Opaque_BlitRow32_PROC S32A_Opaque_BlitRow32_arm_test_alpha
#else /* !defined(TEST_SRC_ALPHA) */
static void S32A_Opaque_BlitRow32_arm(SkPMColor* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src,
int count, U8CPU alpha) {
SkASSERT(255 == alpha);
/* Does not support the TEST_SRC_ALPHA case */
asm volatile (
"cmp %[count], #0 \n\t" /* comparing count with 0 */
"beq 3f \n\t" /* if zero exit */
"mov ip, #0xff \n\t" /* load the 0xff mask in ip */
"orr ip, ip, ip, lsl #16 \n\t" /* convert it to 0xff00ff in ip */
"cmp %[count], #2 \n\t" /* compare count with 2 */
"blt 2f \n\t" /* if less than 2 -> single loop */
/* Double Loop */
"1: \n\t" /* <double loop> */
"ldm %[src]!, {r5,r6} \n\t" /* load the src(s) at r5-r6 */
"ldm %[dst], {r7,r8} \n\t" /* loading dst(s) into r7-r8 */
"lsr r4, r5, #24 \n\t" /* extracting the alpha from source and storing it to r4 */
/* ----------- */
"and r9, ip, r7 \n\t" /* r9 = br masked by ip */
"rsb r4, r4, #256 \n\t" /* subtracting the alpha from 256 -> r4=scale */
"and r10, ip, r7, lsr #8 \n\t" /* r10 = ag masked by ip */
"mul r9, r9, r4 \n\t" /* br = br * scale */
"mul r10, r10, r4 \n\t" /* ag = ag * scale */
"and r9, ip, r9, lsr #8 \n\t" /* lsr br by 8 and mask it */
"and r10, r10, ip, lsl #8 \n\t" /* mask ag with reverse mask */
"lsr r4, r6, #24 \n\t" /* extracting the alpha from source and storing it to r4 */
"orr r7, r9, r10 \n\t" /* br | ag*/
"add r7, r5, r7 \n\t" /* dst = src + calc dest(r7) */
"rsb r4, r4, #256 \n\t" /* subtracting the alpha from 255 -> r4=scale */
/* ----------- */
"and r9, ip, r8 \n\t" /* r9 = br masked by ip */
"and r10, ip, r8, lsr #8 \n\t" /* r10 = ag masked by ip */
"mul r9, r9, r4 \n\t" /* br = br * scale */
"sub %[count], %[count], #2 \n\t"
"mul r10, r10, r4 \n\t" /* ag = ag * scale */
"and r9, ip, r9, lsr #8 \n\t" /* lsr br by 8 and mask it */
"and r10, r10, ip, lsl #8 \n\t" /* mask ag with reverse mask */
"cmp %[count], #1 \n\t" /* comparing count with 1 */
"orr r8, r9, r10 \n\t" /* br | ag */
"add r8, r6, r8 \n\t" /* dst = src + calc dest(r8) */
/* ----------------- */
"stm %[dst]!, {r7,r8} \n\t" /* *dst = r7, increment dst by two (each times 4) */
/* ----------------- */
"bgt 1b \n\t" /* if greater than 1 -> reloop */
"blt 3f \n\t" /* if less than 1 -> exit */
/* Single Loop */
"2: \n\t" /* <single loop> */
"ldr r5, [%[src]], #4 \n\t" /* load the src pointer into r5 r5=src */
"ldr r7, [%[dst]] \n\t" /* loading dst into r7 */
"lsr r4, r5, #24 \n\t" /* extracting the alpha from source and storing it to r4 */
/* ----------- */
"and r9, ip, r7 \n\t" /* r9 = br masked by ip */
"rsb r4, r4, #256 \n\t" /* subtracting the alpha from 256 -> r4=scale */
"and r10, ip, r7, lsr #8 \n\t" /* r10 = ag masked by ip */
"mul r9, r9, r4 \n\t" /* br = br * scale */
"mul r10, r10, r4 \n\t" /* ag = ag * scale */
"and r9, ip, r9, lsr #8 \n\t" /* lsr br by 8 and mask it */
"and r10, r10, ip, lsl #8 \n\t" /* mask ag */
"orr r7, r9, r10 \n\t" /* br | ag */
"add r7, r5, r7 \n\t" /* *dst = src + calc dest(r7) */
/* ----------------- */
"str r7, [%[dst]], #4 \n\t" /* *dst = r7, increment dst by one (times 4) */
/* ----------------- */
"3: \n\t" /* <exit> */
: [dst] "+r" (dst), [src] "+r" (src), [count] "+r" (count)
:
: "cc", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "ip", "memory"
);
}
#define S32A_Opaque_BlitRow32_PROC S32A_Opaque_BlitRow32_arm
#endif /* !defined(TEST_SRC_ALPHA) */
#else /* ... #elif defined (__ARM_ARCH__) */
#define S32A_Opaque_BlitRow32_PROC NULL
#endif
#if defined(__ARM_HAVE_NEON) && defined(SK_CPU_LENDIAN) && defined(ENABLE_OPTIMIZED_S32A_BLITTERS)
/* External function in file S32A_Blend_BlitRow32_neon.S */
extern "C" void S32A_Blend_BlitRow32_neon(SkPMColor* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src,
int count, U8CPU alpha);
#define S32A_Blend_BlitRow32_PROC S32A_Blend_BlitRow32_neon
#else
/*
* ARM asm version of S32A_Blend_BlitRow32
*/
static void S32A_Blend_BlitRow32_arm(SkPMColor* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src,
int count, U8CPU alpha) {
asm volatile (
"cmp %[count], #0 \n\t" /* comparing count with 0 */
"beq 3f \n\t" /* if zero exit */
"mov r12, #0xff \n\t" /* load the 0xff mask in r12 */
"orr r12, r12, r12, lsl #16 \n\t" /* convert it to 0xff00ff in r12 */
/* src1,2_scale */
"add %[alpha], %[alpha], #1 \n\t" /* loading %[alpha]=src_scale=alpha+1 */
"cmp %[count], #2 \n\t" /* comparing count with 2 */
"blt 2f \n\t" /* if less than 2 -> single loop */
/* Double Loop */
"1: \n\t" /* <double loop> */
"ldm %[src]!, {r5, r6} \n\t" /* loading src pointers into r5 and r6 */
"ldm %[dst], {r7, r8} \n\t" /* loading dst pointers into r7 and r8 */
/* dst1_scale and dst2_scale*/
"lsr r9, r5, #24 \n\t" /* src >> 24 */
"lsr r10, r6, #24 \n\t" /* src >> 24 */
"smulbb r9, r9, %[alpha] \n\t" /* r9 = SkMulS16 r9 with src_scale */
"smulbb r10, r10, %[alpha] \n\t" /* r10 = SkMulS16 r10 with src_scale */
"lsr r9, r9, #8 \n\t" /* r9 >> 8 */
"lsr r10, r10, #8 \n\t" /* r10 >> 8 */
"rsb r9, r9, #256 \n\t" /* dst1_scale = r9 = 255 - r9 + 1 */
"rsb r10, r10, #256 \n\t" /* dst2_scale = r10 = 255 - r10 + 1 */
/* ---------------------- */
/* src1, src1_scale */
"and r11, r12, r5, lsr #8 \n\t" /* ag = r11 = r5 masked by r12 lsr by #8 */
"and r4, r12, r5 \n\t" /* rb = r4 = r5 masked by r12 */
"mul r11, r11, %[alpha] \n\t" /* ag = r11 times src_scale */
"mul r4, r4, %[alpha] \n\t" /* rb = r4 times src_scale */
"and r11, r11, r12, lsl #8 \n\t" /* ag masked by reverse mask (r12) */
"and r4, r12, r4, lsr #8 \n\t" /* rb masked by mask (r12) */
"orr r5, r11, r4 \n\t" /* r5 = (src1, src_scale) */
/* dst1, dst1_scale */
"and r11, r12, r7, lsr #8 \n\t" /* ag = r11 = r7 masked by r12 lsr by #8 */
"and r4, r12, r7 \n\t" /* rb = r4 = r7 masked by r12 */
"mul r11, r11, r9 \n\t" /* ag = r11 times dst_scale (r9) */
"mul r4, r4, r9 \n\t" /* rb = r4 times dst_scale (r9) */
"and r11, r11, r12, lsl #8 \n\t" /* ag masked by reverse mask (r12) */
"and r4, r12, r4, lsr #8 \n\t" /* rb masked by mask (r12) */
"orr r9, r11, r4 \n\t" /* r9 = (dst1, dst_scale) */
/* ---------------------- */
"add r9, r5, r9 \n\t" /* *dst = src plus dst both scaled */
/* ---------------------- */
/* ====================== */
/* src2, src2_scale */
"and r11, r12, r6, lsr #8 \n\t" /* ag = r11 = r6 masked by r12 lsr by #8 */
"and r4, r12, r6 \n\t" /* rb = r4 = r6 masked by r12 */
"mul r11, r11, %[alpha] \n\t" /* ag = r11 times src_scale */
"mul r4, r4, %[alpha] \n\t" /* rb = r4 times src_scale */
"and r11, r11, r12, lsl #8 \n\t" /* ag masked by reverse mask (r12) */
"and r4, r12, r4, lsr #8 \n\t" /* rb masked by mask (r12) */
"orr r6, r11, r4 \n\t" /* r6 = (src2, src_scale) */
/* dst2, dst2_scale */
"and r11, r12, r8, lsr #8 \n\t" /* ag = r11 = r8 masked by r12 lsr by #8 */
"and r4, r12, r8 \n\t" /* rb = r4 = r8 masked by r12 */
"mul r11, r11, r10 \n\t" /* ag = r11 times dst_scale (r10) */
"mul r4, r4, r10 \n\t" /* rb = r4 times dst_scale (r6) */
"and r11, r11, r12, lsl #8 \n\t" /* ag masked by reverse mask (r12) */
"and r4, r12, r4, lsr #8 \n\t" /* rb masked by mask (r12) */
"orr r10, r11, r4 \n\t" /* r10 = (dst2, dst_scale) */
"sub %[count], %[count], #2 \n\t" /* decrease count by 2 */
/* ---------------------- */
"add r10, r6, r10 \n\t" /* *dst = src plus dst both scaled */
/* ---------------------- */
"cmp %[count], #1 \n\t" /* compare count with 1 */
/* ----------------- */
"stm %[dst]!, {r9, r10} \n\t" /* copy r9 and r10 to r7 and r8 respectively */
/* ----------------- */
"bgt 1b \n\t" /* if %[count] greater than 1 reloop */
"blt 3f \n\t" /* if %[count] less than 1 exit */
/* else get into the single loop */
/* Single Loop */
"2: \n\t" /* <single loop> */
"ldr r5, [%[src]], #4 \n\t" /* loading src pointer into r5: r5=src */
"ldr r7, [%[dst]] \n\t" /* loading dst pointer into r7: r7=dst */
"lsr r6, r5, #24 \n\t" /* src >> 24 */
"and r8, r12, r5, lsr #8 \n\t" /* ag = r8 = r5 masked by r12 lsr by #8 */
"smulbb r6, r6, %[alpha] \n\t" /* r6 = SkMulS16 with src_scale */
"and r9, r12, r5 \n\t" /* rb = r9 = r5 masked by r12 */
"lsr r6, r6, #8 \n\t" /* r6 >> 8 */
"mul r8, r8, %[alpha] \n\t" /* ag = r8 times scale */
"rsb r6, r6, #256 \n\t" /* r6 = 255 - r6 + 1 */
/* src, src_scale */
"mul r9, r9, %[alpha] \n\t" /* rb = r9 times scale */
"and r8, r8, r12, lsl #8 \n\t" /* ag masked by reverse mask (r12) */
"and r9, r12, r9, lsr #8 \n\t" /* rb masked by mask (r12) */
"orr r10, r8, r9 \n\t" /* r10 = (scr, src_scale) */
/* dst, dst_scale */
"and r8, r12, r7, lsr #8 \n\t" /* ag = r8 = r7 masked by r12 lsr by #8 */
"and r9, r12, r7 \n\t" /* rb = r9 = r7 masked by r12 */
"mul r8, r8, r6 \n\t" /* ag = r8 times scale (r6) */
"mul r9, r9, r6 \n\t" /* rb = r9 times scale (r6) */
"and r8, r8, r12, lsl #8 \n\t" /* ag masked by reverse mask (r12) */
"and r9, r12, r9, lsr #8 \n\t" /* rb masked by mask (r12) */
"orr r7, r8, r9 \n\t" /* r7 = (dst, dst_scale) */
"add r10, r7, r10 \n\t" /* *dst = src plus dst both scaled */
/* ----------------- */
"str r10, [%[dst]], #4 \n\t" /* *dst = r10, postincrement dst by one (times 4) */
/* ----------------- */
"3: \n\t" /* <exit> */
: [dst] "+r" (dst), [src] "+r" (src), [count] "+r" (count), [alpha] "+r" (alpha)
:
: "cc", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "memory"
);
}
#define S32A_Blend_BlitRow32_PROC S32A_Blend_BlitRow32_arm
#endif
/* Neon version of S32_Blend_BlitRow32()
* portable version is in src/core/SkBlitRow_D32.cpp
*/
#if defined(__ARM_HAVE_NEON) && defined(SK_CPU_LENDIAN)
static void S32_Blend_BlitRow32_neon(SkPMColor* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src,
int count, U8CPU alpha) {
SkASSERT(alpha <= 255);
if (count > 0) {
uint16_t src_scale = SkAlpha255To256(alpha);
uint16_t dst_scale = 256 - src_scale;
/* run them N at a time through the NEON unit */
/* note that each 1 is 4 bytes, each treated exactly the same,
* so we can work under that guise. We *do* know that the src&dst
* will be 32-bit aligned quantities, so we can specify that on
* the load/store ops and do a neon 'reinterpret' to get us to
* byte-sized (pun intended) pieces that we widen/multiply/shift
* we're limited at 128 bits in the wide ops, which is 8x16bits
* or a pair of 32 bit src/dsts.
*/
/* we *could* manually unroll this loop so that we load 128 bits
* (as a pair of 64s) from each of src and dst, processing them
* in pieces. This might give us a little better management of
* the memory latency, but my initial attempts here did not
* produce an instruction stream that looked all that nice.
*/
#define UNROLL 2
while (count >= UNROLL) {
uint8x8_t src_raw, dst_raw, dst_final;
uint16x8_t src_wide, dst_wide;
/* get 64 bits of src, widen it, multiply by src_scale */
src_raw = vreinterpret_u8_u32(vld1_u32(src));
src_wide = vmovl_u8(src_raw);
/* gcc hoists vdupq_n_u16(), better than using vmulq_n_u16() */
src_wide = vmulq_u16 (src_wide, vdupq_n_u16(src_scale));
/* ditto with dst */
dst_raw = vreinterpret_u8_u32(vld1_u32(dst));
dst_wide = vmovl_u8(dst_raw);
/* combine add with dst multiply into mul-accumulate */
dst_wide = vmlaq_u16(src_wide, dst_wide, vdupq_n_u16(dst_scale));
dst_final = vshrn_n_u16(dst_wide, 8);
vst1_u32(dst, vreinterpret_u32_u8(dst_final));
src += UNROLL;
dst += UNROLL;
count -= UNROLL;
}
/* RBE: well, i don't like how gcc manages src/dst across the above
* loop it's constantly calculating src+bias, dst+bias and it only
* adjusts the real ones when we leave the loop. Not sure why
* it's "hoisting down" (hoisting implies above in my lexicon ;))
* the adjustments to src/dst/count, but it does...
* (might be SSA-style internal logic...
*/
#if UNROLL == 2
if (count == 1) {
*dst = SkAlphaMulQ(*src, src_scale) + SkAlphaMulQ(*dst, dst_scale);
}
#else
if (count > 0) {
do {
*dst = SkAlphaMulQ(*src, src_scale) + SkAlphaMulQ(*dst, dst_scale);
src += 1;
dst += 1;
} while (--count > 0);
}
#endif
#undef UNROLL
}
}
#define S32_Blend_BlitRow32_PROC S32_Blend_BlitRow32_neon
#else
#define S32_Blend_BlitRow32_PROC NULL
#endif
///////////////////////////////////////////////////////////////////////////////
#if defined(__ARM_HAVE_NEON) && defined(SK_CPU_LENDIAN) && defined(ENABLE_OPTIMIZED_S32A_BLITTERS)
/* This function was broken out to keep GCC from storing all registers on the stack
even though they would not be used in the assembler code */
static __attribute__ ((noinline)) void S32A_D565_Opaque_Dither_Handle8(uint16_t * SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src,
int count, U8CPU alpha, int x, int y) {
DITHER_565_SCAN(y);
do {
SkPMColor c = *src++;
SkPMColorAssert(c);
if (c) {
unsigned a = SkGetPackedA32(c);
// dither and alpha are just temporary variables to work-around
// an ICE in debug.
unsigned dither = DITHER_VALUE(x);
unsigned alpha = SkAlpha255To256(a);
int d = SkAlphaMul(dither, alpha);
unsigned sr = SkGetPackedR32(c);
unsigned sg = SkGetPackedG32(c);
unsigned sb = SkGetPackedB32(c);
sr = SkDITHER_R32_FOR_565(sr, d);
sg = SkDITHER_G32_FOR_565(sg, d);
sb = SkDITHER_B32_FOR_565(sb, d);
uint32_t src_expanded = (sg << 24) | (sr << 13) | (sb << 2);
uint32_t dst_expanded = SkExpand_rgb_16(*dst);
dst_expanded = dst_expanded * (SkAlpha255To256(255 - a) >> 3);
// now src and dst expanded are in g:11 r:10 x:1 b:10
*dst = SkCompact_rgb_16((src_expanded + dst_expanded) >> 5);
}
dst += 1;
DITHER_INC_X(x);
} while (--count != 0);
}
static void S32A_D565_Opaque_Dither_neon(uint16_t * SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src,
int count, U8CPU alpha, int x, int y) {
SkASSERT(255 == alpha);
if (count >= 8) {
asm volatile (
"pld [%[src]] \n\t" // Preload source
"pld [%[dst]] \n\t" // Preload destination pixels
"and %[y], %[y], #0x03 \n\t" // Mask y by 3
"vmov.i8 d31, #0x01 \n\t" // Set up alpha constant
"add %[y], %[y], lsl #1 \n\t" // and multiply with 12 to get the row offset
"and %[x], %[x], #0x03 \n\t" // Mask x by 3
"vmov.i16 q12, #256 \n\t" // Set up alpha constant
"add %[y], %[matrix], %[y], lsl #2 \n\t" //
"add r7, %[x], %[y] \n\t" //
"vld1.8 {d26}, [r7] \n\t" // Load dither values
"add %[x], %[count] \n\t" //
"vmov.i16 q11, #0x3F \n\t" // Set up green mask constant
"and %[x], %[x], #0x03 \n\t" // Mask x by 3
"vmovl.u8 q13, d26 \n\t" // Expand dither to 16-bit
"add r7, %[x], %[y] \n\t" //
"vmov.i16 q10, #0x1F \n\t" // Set up blue mask constant
"vld1.8 {d28}, [r7] \n\t" // Load iteration 2+ dither values
"ands r7, %[count], #7 \n\t" // Calculate first iteration increment
"moveq r7, #8 \n\t" // Do full iteration?
"vmovl.u8 q14, d28 \n\t" // Expand dither to 16-bit
"vld4.8 {d0-d3}, [%[src]] \n\t" // Load eight source pixels
"vld1.16 {q3}, [%[dst]] \n\t" // Load destination 565 pixels
"add %[src], r7, lsl #2 \n\t" // Increment source pointer
"add %[dst], r7, lsl #1 \n\t" // Increment destination buffer pointer
"subs %[count], r7 \n\t" // Decrement loop counter
"sub r7, %[dst], r7, lsl #1 \n\t" // Save original destination pointer
"b 2f \n\t"
"1: \n\t"
"vld4.8 {d0-d3}, [%[src]]! \n\t" // Load eight source pixels
"vld1.16 {q3}, [%[dst]]! \n\t" // Load destination 565 pixels
"vst1.16 {q2}, [r7] \n\t" // Write result to memory
"sub r7, %[dst], #8*2 \n\t" // Calculate next loop's destination pointer
"subs %[count], #8 \n\t" // Decrement loop counter
"2: \n\t"
"pld [%[src]] \n\t" // Preload destination pixels
"pld [%[dst]] \n\t" // Preload destination pixels
"vaddl.u8 q2, d3, d31 \n\t" // Add 1 to alpha to get 0-256
"vshr.u8 d16, d0, #5 \n\t" // Calculate source red subpixel
"vmul.u16 q2, q2, q13 \n\t" // Multiply alpha with dither value
"vsub.i8 d0, d16 \n\t" // red = (red - (red >> 5) + dither)
"vshrn.i16 d30, q2, #8 \n\t" // Shift and narrow result to 0-7
"vadd.i8 d0, d30 \n\t" //
"vshr.u8 d16, d2, #5 \n\t" // Calculate source blue subpixel
"vsub.i8 d2, d16 \n\t" // blue = (blue - (blue >> 5) + dither)
"vshr.u8 d16, d1, #6 \n\t" // Calculate source green subpixel
"vadd.i8 d2, d30 \n\t" //
"vsub.i8 d1, d16 \n\t" // green = (green - (green >> 6) + (dither >> 1))
"vshr.u8 d30, #1 \n\t" //
"vadd.i8 d1, d30 \n\t" //
"vsubw.u8 q2, q12, d3 \n\t" // Calculate inverse alpha 256-1
"vshr.u16 q8, q3, #5 \n\t" // Extract destination green pixel
"vshr.u16 q9, q3, #11 \n\t" // Extract destination red pixel
"vand q8, q11 \n\t" // Shift green
"vand q3, q10 \n\t" // Extract destination blue pixel
"vshr.u16 q2, #3 \n\t" // Shift alpha
"vshll.u8 q1, d2, #2 \n\t" // Calculate destination blue pixel
"vmla.i16 q1, q3, q2 \n\t" // ...and add to source pixel
"vshll.u8 q3, d1, #3 \n\t" // Calculate destination green pixel
"vmov.u8 q13, q14 \n\t" // Set dither matrix to iteration 2+ values
"vmla.i16 q3, q8, q2 \n\t" // ...and add to source pixel
"vshll.u8 q8, d0, #2 \n\t" // Calculate destination red pixel
"vmla.i16 q8, q9, q2 \n\t" // ...and add to source pixel
"vshr.u16 q1, #5 \n\t" // Pack blue pixel
"vand q2, q1, q10 \n\t" //
"vshr.u16 q3, #5 \n\t" // Pack green pixel
"vsli.16 q2, q3, #5 \n\t" // ...and insert
"vshr.u16 q8, #5 \n\t" // Pack red pixel
"vsli.16 q2, q8, #11 \n\t" // ...and insert
"bne 1b \n\t" // If inner loop counter != 0, loop
"vst1.16 {q2}, [r7] \n\t" // Write result to memory
: [src] "+r" (src), [dst] "+r" (dst), [count] "+r" (count), [x] "+r" (x), [y] "+r" (y)
: [matrix] "r" (gDitherMatrix_Neon)
: "cc", "memory", "r7", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23", "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31"
);
}
else {
S32A_D565_Opaque_Dither_Handle8(dst, src, count, alpha, x, y);
}
}
#define S32A_D565_Opaque_Dither_PROC S32A_D565_Opaque_Dither_neon
#elif defined(__ARM_HAVE_NEON) && defined(SK_CPU_LENDIAN)
#undef DEBUG_OPAQUE_DITHER
#if defined(DEBUG_OPAQUE_DITHER)
static void showme8(char *str, void *p, int len)
{
static char buf[256];
char tbuf[32];
int i;
char *pc = (char*) p;
sprintf(buf,"%8s:", str);
for(i=0;i<len;i++) {
sprintf(tbuf, " %02x", pc[i]);
strcat(buf, tbuf);
}
SkDebugf("%s\n", buf);
}
static void showme16(char *str, void *p, int len)
{
static char buf[256];
char tbuf[32];
int i;
uint16_t *pc = (uint16_t*) p;
sprintf(buf,"%8s:", str);
len = (len / sizeof(uint16_t)); /* passed as bytes */
for(i=0;i<len;i++) {
sprintf(tbuf, " %04x", pc[i]);
strcat(buf, tbuf);
}
SkDebugf("%s\n", buf);
}
#endif
static void S32A_D565_Opaque_Dither_neon (uint16_t * SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src,
int count, U8CPU alpha, int x, int y) {
SkASSERT(255 == alpha);
#define UNROLL 8
if (count >= UNROLL) {
uint8x8_t dbase;
#if defined(DEBUG_OPAQUE_DITHER)
uint16_t tmpbuf[UNROLL];
int td[UNROLL];
int tdv[UNROLL];
int ta[UNROLL];
int tap[UNROLL];
uint16_t in_dst[UNROLL];
int offset = 0;
int noisy = 0;
#endif
const uint8_t *dstart = &gDitherMatrix_Neon[(y&3)*12 + (x&3)];
dbase = vld1_u8(dstart);
do {
uint8x8_t sr, sg, sb, sa, d;
uint16x8_t dst8, scale8, alpha8;
uint16x8_t dst_r, dst_g, dst_b;
#if defined(DEBUG_OPAQUE_DITHER)
/* calculate 8 elements worth into a temp buffer */
{
int my_y = y;
int my_x = x;
SkPMColor* my_src = (SkPMColor*)src;
uint16_t* my_dst = dst;
int i;
DITHER_565_SCAN(my_y);
for(i=0;i<UNROLL;i++) {
SkPMColor c = *my_src++;
SkPMColorAssert(c);
if (c) {
unsigned a = SkGetPackedA32(c);
int d = SkAlphaMul(DITHER_VALUE(my_x), SkAlpha255To256(a));
tdv[i] = DITHER_VALUE(my_x);
ta[i] = a;
tap[i] = SkAlpha255To256(a);
td[i] = d;
unsigned sr = SkGetPackedR32(c);
unsigned sg = SkGetPackedG32(c);
unsigned sb = SkGetPackedB32(c);
sr = SkDITHER_R32_FOR_565(sr, d);
sg = SkDITHER_G32_FOR_565(sg, d);
sb = SkDITHER_B32_FOR_565(sb, d);
uint32_t src_expanded = (sg << 24) | (sr << 13) | (sb << 2);
uint32_t dst_expanded = SkExpand_rgb_16(*my_dst);
dst_expanded = dst_expanded * (SkAlpha255To256(255 - a) >> 3);
// now src and dst expanded are in g:11 r:10 x:1 b:10
tmpbuf[i] = SkCompact_rgb_16((src_expanded + dst_expanded) >> 5);
td[i] = d;
} else {
tmpbuf[i] = *my_dst;
ta[i] = tdv[i] = td[i] = 0xbeef;
}
in_dst[i] = *my_dst;
my_dst += 1;
DITHER_INC_X(my_x);
}
}
#endif
/* source is in ABGR */
{
register uint8x8_t d0 asm("d0");
register uint8x8_t d1 asm("d1");
register uint8x8_t d2 asm("d2");
register uint8x8_t d3 asm("d3");
asm ("vld4.8 {d0-d3},[%4] /* r=%P0 g=%P1 b=%P2 a=%P3 */"
: "=w" (d0), "=w" (d1), "=w" (d2), "=w" (d3)
: "r" (src)
);
sr = d0; sg = d1; sb = d2; sa = d3;
}
/* calculate 'd', which will be 0..7 */
/* dbase[] is 0..7; alpha is 0..256; 16 bits suffice */
#if defined(SK_BUILD_FOR_ANDROID)
/* SkAlpha255To256() semantic a+1 vs a+a>>7 */
alpha8 = vaddw_u8(vmovl_u8(sa), vdup_n_u8(1));
#else
alpha8 = vaddw_u8(vmovl_u8(sa), vshr_n_u8(sa, 7));
#endif
alpha8 = vmulq_u16(alpha8, vmovl_u8(dbase));
d = vshrn_n_u16(alpha8, 8); /* narrowing too */
/* sr = sr - (sr>>5) + d */
/* watching for 8-bit overflow. d is 0..7; risky range of
* sr is >248; and then (sr>>5) is 7 so it offsets 'd';
* safe as long as we do ((sr-sr>>5) + d) */
sr = vsub_u8(sr, vshr_n_u8(sr, 5));
sr = vadd_u8(sr, d);
/* sb = sb - (sb>>5) + d */
sb = vsub_u8(sb, vshr_n_u8(sb, 5));
sb = vadd_u8(sb, d);
/* sg = sg - (sg>>6) + d>>1; similar logic for overflows */
sg = vsub_u8(sg, vshr_n_u8(sg, 6));
sg = vadd_u8(sg, vshr_n_u8(d,1));
/* need to pick up 8 dst's -- at 16 bits each, 128 bits */
dst8 = vld1q_u16(dst);
dst_b = vandq_u16(dst8, vdupq_n_u16(0x001F));
dst_g = vandq_u16(vshrq_n_u16(dst8,5), vdupq_n_u16(0x003F));
dst_r = vshrq_n_u16(dst8,11); /* clearing hi bits */
/* blend */
#if 1
/* SkAlpha255To256() semantic a+1 vs a+a>>7 */
/* originally 255-sa + 1 */
scale8 = vsubw_u8(vdupq_n_u16(256), sa);
#else
scale8 = vsubw_u8(vdupq_n_u16(255), sa);
scale8 = vaddq_u16(scale8, vshrq_n_u16(scale8, 7));
#endif
#if 1
/* combine the addq and mul, save 3 insns */
scale8 = vshrq_n_u16(scale8, 3);
dst_b = vmlaq_u16(vshll_n_u8(sb,2), dst_b, scale8);
dst_g = vmlaq_u16(vshll_n_u8(sg,3), dst_g, scale8);
dst_r = vmlaq_u16(vshll_n_u8(sr,2), dst_r, scale8);
#else
/* known correct, but +3 insns over above */
scale8 = vshrq_n_u16(scale8, 3);
dst_b = vmulq_u16(dst_b, scale8);
dst_g = vmulq_u16(dst_g, scale8);
dst_r = vmulq_u16(dst_r, scale8);
/* combine */
/* NB: vshll widens, need to preserve those bits */
dst_b = vaddq_u16(dst_b, vshll_n_u8(sb,2));
dst_g = vaddq_u16(dst_g, vshll_n_u8(sg,3));
dst_r = vaddq_u16(dst_r, vshll_n_u8(sr,2));
#endif
/* repack to store */
dst8 = vandq_u16(vshrq_n_u16(dst_b, 5), vdupq_n_u16(0x001F));
dst8 = vsliq_n_u16(dst8, vshrq_n_u16(dst_g, 5), 5);
dst8 = vsliq_n_u16(dst8, vshrq_n_u16(dst_r,5), 11);
vst1q_u16(dst, dst8);
#if defined(DEBUG_OPAQUE_DITHER)
/* verify my 8 elements match the temp buffer */
{
int i, bad=0;
static int invocation;
for (i=0;i<UNROLL;i++)
if (tmpbuf[i] != dst[i]) bad=1;
if (bad) {
SkDebugf("BAD S32A_D565_Opaque_Dither_neon(); invocation %d offset %d\n",
invocation, offset);
SkDebugf(" alpha 0x%x\n", alpha);
for (i=0;i<UNROLL;i++)
SkDebugf("%2d: %s %04x w %04x id %04x s %08x d %04x %04x %04x %04x\n",
i, ((tmpbuf[i] != dst[i])?"BAD":"got"),
dst[i], tmpbuf[i], in_dst[i], src[i], td[i], tdv[i], tap[i], ta[i]);
showme16("alpha8", &alpha8, sizeof(alpha8));
showme16("scale8", &scale8, sizeof(scale8));
showme8("d", &d, sizeof(d));
showme16("dst8", &dst8, sizeof(dst8));
showme16("dst_b", &dst_b, sizeof(dst_b));
showme16("dst_g", &dst_g, sizeof(dst_g));
showme16("dst_r", &dst_r, sizeof(dst_r));
showme8("sb", &sb, sizeof(sb));
showme8("sg", &sg, sizeof(sg));
showme8("sr", &sr, sizeof(sr));
/* cop out */
return;
}
offset += UNROLL;
invocation++;
}
#endif
dst += UNROLL;
src += UNROLL;
count -= UNROLL;
/* skip x += UNROLL, since it's unchanged mod-4 */
} while (count >= UNROLL);
}
#undef UNROLL
/* residuals */
if (count > 0) {
DITHER_565_SCAN(y);
do {
SkPMColor c = *src++;
SkPMColorAssert(c);
if (c) {
unsigned a = SkGetPackedA32(c);
// dither and alpha are just temporary variables to work-around
// an ICE in debug.
unsigned dither = DITHER_VALUE(x);
unsigned alpha = SkAlpha255To256(a);
int d = SkAlphaMul(dither, alpha);
unsigned sr = SkGetPackedR32(c);
unsigned sg = SkGetPackedG32(c);
unsigned sb = SkGetPackedB32(c);
sr = SkDITHER_R32_FOR_565(sr, d);
sg = SkDITHER_G32_FOR_565(sg, d);
sb = SkDITHER_B32_FOR_565(sb, d);
uint32_t src_expanded = (sg << 24) | (sr << 13) | (sb << 2);
uint32_t dst_expanded = SkExpand_rgb_16(*dst);
dst_expanded = dst_expanded * (SkAlpha255To256(255 - a) >> 3);
// now src and dst expanded are in g:11 r:10 x:1 b:10
*dst = SkCompact_rgb_16((src_expanded + dst_expanded) >> 5);
}
dst += 1;
DITHER_INC_X(x);
} while (--count != 0);
}
}
#define S32A_D565_Opaque_Dither_PROC S32A_D565_Opaque_Dither_neon
#else
#define S32A_D565_Opaque_Dither_PROC NULL
#endif
///////////////////////////////////////////////////////////////////////////////
#if defined(__ARM_HAVE_NEON) && defined(SK_CPU_LENDIAN)
/* 2009/10/27: RBE says "a work in progress"; debugging says ok;
* speedup untested, but ARM version is 26 insns/iteration and
* this NEON version is 21 insns/iteration-of-8 (2.62insns/element)
* which is 10x the native version; that's pure instruction counts,
* not accounting for any instruction or memory latencies.
*/
#undef DEBUG_S32_OPAQUE_DITHER
static void S32_D565_Opaque_Dither_neon(uint16_t* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src,
int count, U8CPU alpha, int x, int y) {
SkASSERT(255 == alpha);
#define UNROLL 8
if (count >= UNROLL) {
uint8x8_t d;
const uint8_t *dstart = &gDitherMatrix_Neon[(y&3)*12 + (x&3)];
d = vld1_u8(dstart);
while (count >= UNROLL) {
uint8x8_t sr, sg, sb, sa;
uint16x8_t dr, dg, db, da;
uint16x8_t dst8;
/* source is in ABGR ordering (R == lsb) */
{
register uint8x8_t d0 asm("d0");
register uint8x8_t d1 asm("d1");
register uint8x8_t d2 asm("d2");
register uint8x8_t d3 asm("d3");
asm ("vld4.8 {d0-d3},[%4] /* r=%P0 g=%P1 b=%P2 a=%P3 */"
: "=w" (d0), "=w" (d1), "=w" (d2), "=w" (d3)
: "r" (src)
);
sr = d0; sg = d1; sb = d2; sa = d3;
}
/* XXX: if we want to prefetch, hide it in the above asm()
* using the gcc __builtin_prefetch(), the prefetch will
* fall to the bottom of the loop -- it won't stick up
* at the top of the loop, just after the vld4.
*/
/* sr = sr - (sr>>5) + d */
sr = vsub_u8(sr, vshr_n_u8(sr, 5));
dr = vaddl_u8(sr, d);
/* sb = sb - (sb>>5) + d */
sb = vsub_u8(sb, vshr_n_u8(sb, 5));
db = vaddl_u8(sb, d);
/* sg = sg - (sg>>6) + d>>1; similar logic for overflows */
sg = vsub_u8(sg, vshr_n_u8(sg, 6));
dg = vaddl_u8(sg, vshr_n_u8(d,1));
/* XXX: check that the "d>>1" here is hoisted */
/* pack high bits of each into 565 format (rgb, b is lsb) */
dst8 = vshrq_n_u16(db, 3);
dst8 = vsliq_n_u16(dst8, vshrq_n_u16(dg, 2), 5);
dst8 = vsliq_n_u16(dst8, vshrq_n_u16(dr,3), 11);
/* store it */
vst1q_u16(dst, dst8);
#if defined(DEBUG_S32_OPAQUE_DITHER)
/* always good to know if we generated good results */
{
int i, myx = x, myy = y;
DITHER_565_SCAN(myy);
for (i=0;i<UNROLL;i++) {
SkPMColor c = src[i];
unsigned dither = DITHER_VALUE(myx);
uint16_t val = SkDitherRGB32To565(c, dither);
if (val != dst[i]) {
SkDebugf("RBE: src %08x dither %02x, want %04x got %04x dbas[i] %02x\n",
c, dither, val, dst[i], dstart[i]);
}
DITHER_INC_X(myx);
}
}
#endif
dst += UNROLL;
src += UNROLL;
count -= UNROLL;
x += UNROLL; /* probably superfluous */
}
}
#undef UNROLL
/* residuals */
if (count > 0) {
DITHER_565_SCAN(y);
do {
SkPMColor c = *src++;
SkPMColorAssert(c);
SkASSERT(SkGetPackedA32(c) == 255);
unsigned dither = DITHER_VALUE(x);
*dst++ = SkDitherRGB32To565(c, dither);
DITHER_INC_X(x);
} while (--count != 0);
}
}
#define S32_D565_Opaque_Dither_PROC S32_D565_Opaque_Dither_neon
#else
#define S32_D565_Opaque_Dither_PROC NULL
#endif
#if defined(__ARM_HAVE_NEON) && defined(SK_CPU_LENDIAN)
static void Color32_neon(SkPMColor* dst, const SkPMColor* src, int count,
SkPMColor color) {
if (count <= 0) {
return;
}
if (0 == color) {
if (src != dst) {
memcpy(dst, src, count * sizeof(SkPMColor));
}
return;
}
unsigned colorA = SkGetPackedA32(color);
if (255 == colorA) {
sk_memset32(dst, color, count);
} else {
unsigned scale = 256 - SkAlpha255To256(colorA);
if (count >= 8) {
// at the end of this assembly, count will have been decremented
// to a negative value. That is, if count mod 8 = x, it will be
// -8 +x coming out.
asm volatile (
PLD128(src, 0)
"vdup.32 q0, %[color] \n\t"
PLD128(src, 128)
// scale numerical interval [0-255], so load as 8 bits
"vdup.8 d2, %[scale] \n\t"
PLD128(src, 256)
"subs %[count], %[count], #8 \n\t"
PLD128(src, 384)
"Loop_Color32: \n\t"
// load src color, 8 pixels, 4 64 bit registers
// (and increment src).
"vld1.32 {d4-d7}, [%[src]]! \n\t"
PLD128(src, 384)
// multiply long by scale, 64 bits at a time,
// destination into a 128 bit register.
"vmull.u8 q4, d4, d2 \n\t"
"vmull.u8 q5, d5, d2 \n\t"
"vmull.u8 q6, d6, d2 \n\t"
"vmull.u8 q7, d7, d2 \n\t"
// shift the 128 bit registers, containing the 16
// bit scaled values back to 8 bits, narrowing the
// results to 64 bit registers.
"vshrn.i16 d8, q4, #8 \n\t"
"vshrn.i16 d9, q5, #8 \n\t"
"vshrn.i16 d10, q6, #8 \n\t"
"vshrn.i16 d11, q7, #8 \n\t"
// adding back the color, using 128 bit registers.
"vadd.i8 q6, q4, q0 \n\t"
"vadd.i8 q7, q5, q0 \n\t"
// store back the 8 calculated pixels (2 128 bit
// registers), and increment dst.
"vst1.32 {d12-d15}, [%[dst]]! \n\t"
"subs %[count], %[count], #8 \n\t"
"bge Loop_Color32 \n\t"
: [src] "+r" (src), [dst] "+r" (dst), [count] "+r" (count)
: [color] "r" (color), [scale] "r" (scale)
: "cc", "memory",
"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
"d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15"
);
// At this point, if we went through the inline assembly, count is
// a negative value:
// if the value is -8, there is no pixel left to process.
// if the value is -7, there is one pixel left to process
// ...
// And'ing it with 7 will give us the number of pixels
// left to process.
count = count & 0x7;
}
while (count > 0) {
*dst = color + SkAlphaMulQ(*src, scale);
src += 1;
dst += 1;
count--;
}
}
}
#endif
///////////////////////////////////////////////////////////////////////////////
static const SkBlitRow::Proc platform_565_procs[] = {
// no dither
S32_D565_Opaque_PROC,
S32_D565_Blend_PROC,
S32A_D565_Opaque_PROC,
S32A_D565_Blend_PROC,
// dither
S32_D565_Opaque_Dither_PROC,
S32_D565_Blend_Dither_PROC,
S32A_D565_Opaque_Dither_PROC,
NULL, // S32A_D565_Blend_Dither
};
static const SkBlitRow::Proc platform_4444_procs[] = {
// no dither
NULL, // S32_D4444_Opaque,
NULL, // S32_D4444_Blend,
NULL, // S32A_D4444_Opaque,
NULL, // S32A_D4444_Blend,
// dither
NULL, // S32_D4444_Opaque_Dither,
NULL, // S32_D4444_Blend_Dither,
NULL, // S32A_D4444_Opaque_Dither,
NULL, // S32A_D4444_Blend_Dither
};
static const SkBlitRow::Proc32 platform_32_procs[] = {
NULL, // S32_Opaque,
S32_Blend_BlitRow32_PROC, // S32_Blend,
S32A_Opaque_BlitRow32_PROC, // S32A_Opaque,
S32A_Blend_BlitRow32_PROC // S32A_Blend
};
SkBlitRow::Proc SkBlitRow::PlatformProcs4444(unsigned flags) {
return platform_4444_procs[flags];
}
SkBlitRow::Proc SkBlitRow::PlatformProcs565(unsigned flags) {
return platform_565_procs[flags];
}
SkBlitRow::Proc32 SkBlitRow::PlatformProcs32(unsigned flags) {
return platform_32_procs[flags];
}
///////////////////////////////////////////////////////////////////////////////
SkBlitRow::ColorProc SkBlitRow::PlatformColorProc() {
#if defined(__ARM_HAVE_NEON) && defined(SK_CPU_LENDIAN)
return Color32_neon;
#else
return NULL;
#endif
}
SkBlitMask::ColorProc SkBlitMask::PlatformColorProcs(SkBitmap::Config dstConfig,
SkMask::Format maskFormat,
SkColor color) {
return NULL;
}
SkBlitMask::BlitLCD16RowProc SkBlitMask::PlatformBlitRowProcs16(bool isOpaque) {
return NULL;
}
SkBlitMask::RowProc SkBlitMask::PlatformRowProcs(SkBitmap::Config dstConfig,
SkMask::Format maskFormat,
RowFlags flags) {
return NULL;
}
|