summaryrefslogtreecommitdiffstats
path: root/tests/sketch/src/com/android/gesture/LetterRecognizer.java
diff options
context:
space:
mode:
Diffstat (limited to 'tests/sketch/src/com/android/gesture/LetterRecognizer.java')
-rw-r--r--tests/sketch/src/com/android/gesture/LetterRecognizer.java198
1 files changed, 198 insertions, 0 deletions
diff --git a/tests/sketch/src/com/android/gesture/LetterRecognizer.java b/tests/sketch/src/com/android/gesture/LetterRecognizer.java
new file mode 100644
index 0000000..1c15c7d
--- /dev/null
+++ b/tests/sketch/src/com/android/gesture/LetterRecognizer.java
@@ -0,0 +1,198 @@
+/*
+ * Copyright (C) 2009 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package com.android.gesture;
+
+import android.content.Context;
+import android.content.res.Resources;
+import android.util.Log;
+
+import java.io.BufferedReader;
+import java.io.InputStream;
+import java.io.InputStreamReader;
+import java.io.IOException;
+import java.util.ArrayList;
+import java.util.Collections;
+import java.util.Comparator;
+
+public class LetterRecognizer {
+
+ private static final String LOGTAG = "LetterRecognizer";
+
+ public final static int LATTIN_LOWERCASE = 0;
+
+ private SigmoidUnit[] mHiddenLayer;
+
+ private SigmoidUnit[] mOutputLayer;
+
+ private final String[] mClasses;
+
+ private final int mInputCount;
+
+ private class SigmoidUnit {
+
+ private float[] mWeights;
+
+ private SigmoidUnit(float[] weights) {
+ mWeights = weights;
+ }
+
+ private float compute(float[] inputs) {
+ float sum = 0;
+ int count = inputs.length;
+ float[] weights = mWeights;
+ for (int i = 0; i < count; i++) {
+ sum += inputs[i] * weights[i];
+ }
+ sum += weights[weights.length - 1];
+ return 1 / (float)(1 + Math.exp(-sum));
+ }
+ }
+
+ private LetterRecognizer(int numOfInput, int numOfHidden, String[] classes) {
+ mInputCount = (int)Math.sqrt(numOfInput);
+ mHiddenLayer = new SigmoidUnit[numOfHidden];
+ mClasses = classes;
+ mOutputLayer = new SigmoidUnit[classes.length];
+ }
+
+ public static LetterRecognizer getLetterRecognizer(Context context, int type) {
+ switch (type) {
+ case LATTIN_LOWERCASE: {
+ return createFromResource(context, com.android.internal.R.raw.lattin_lowercase);
+ }
+ }
+ return null;
+ }
+
+ public ArrayList<Prediction> recognize(Gesture gesture) {
+ return this.classify(GestureUtils.spatialSampling(gesture, mInputCount));
+ }
+
+ private ArrayList<Prediction> classify(float[] vector) {
+ float[] intermediateOutput = compute(mHiddenLayer, vector);
+ float[] output = compute(mOutputLayer, intermediateOutput);
+ ArrayList<Prediction> predictions = new ArrayList<Prediction>();
+ double sum = 0;
+ int count = mClasses.length;
+ for (int i = 0; i < count; i++) {
+ String name = mClasses[i];
+ double score = output[i];
+ sum += score;
+ predictions.add(new Prediction(name, score));
+ }
+
+ for (int i = 0; i < count; i++) {
+ Prediction name = predictions.get(i);
+ name.score /= sum;
+ }
+
+ Collections.sort(predictions, new Comparator<Prediction>() {
+ public int compare(Prediction object1, Prediction object2) {
+ double score1 = object1.score;
+ double score2 = object2.score;
+ if (score1 > score2) {
+ return -1;
+ } else if (score1 < score2) {
+ return 1;
+ } else {
+ return 0;
+ }
+ }
+ });
+ return predictions;
+ }
+
+ private float[] compute(SigmoidUnit[] layer, float[] input) {
+ float[] output = new float[layer.length];
+ int count = layer.length;
+ for (int i = 0; i < count; i++) {
+ output[i] = layer[i].compute(input);
+ }
+ return output;
+ }
+
+ private static LetterRecognizer createFromResource(Context context, int resourceID) {
+ Resources resources = context.getResources();
+ InputStream stream = resources.openRawResource(resourceID);
+ try {
+ BufferedReader reader = new BufferedReader(new InputStreamReader(stream));
+
+ String line = reader.readLine();
+ int startIndex = 0;
+ int endIndex = -1;
+ endIndex = line.indexOf(" ", startIndex);
+ int iCount = Integer.parseInt(line.substring(startIndex, endIndex));
+
+ startIndex = endIndex + 1;
+ endIndex = line.indexOf(" ", startIndex);
+ int hCount = Integer.parseInt(line.substring(startIndex, endIndex));
+
+ startIndex = endIndex + 1;
+ endIndex = line.length();
+ int oCount = Integer.parseInt(line.substring(startIndex, endIndex));
+
+ String[] classes = new String[oCount];
+ line = reader.readLine();
+ startIndex = 0;
+ endIndex = -1;
+ for (int i = 0; i < oCount; i++) {
+ endIndex = line.indexOf(" ", startIndex);
+ classes[i] = line.substring(startIndex, endIndex);
+ startIndex = endIndex + 1;
+ }
+
+ LetterRecognizer classifier = new LetterRecognizer(iCount, hCount, classes);
+ SigmoidUnit[] hiddenLayer = new SigmoidUnit[hCount];
+ SigmoidUnit[] outputLayer = new SigmoidUnit[oCount];
+
+ for (int i = 0; i < hCount; i++) {
+ float[] weights = new float[iCount];
+ line = reader.readLine();
+ startIndex = 0;
+ for (int j = 0; j < iCount; j++) {
+ endIndex = line.indexOf(" ", startIndex);
+ weights[j] = Float.parseFloat(line.substring(startIndex, endIndex));
+ startIndex = endIndex + 1;
+ }
+ hiddenLayer[i] = classifier.new SigmoidUnit(weights);
+ }
+
+ for (int i = 0; i < oCount; i++) {
+ float[] weights = new float[hCount];
+ line = reader.readLine();
+ startIndex = 0;
+ for (int j = 0; j < hCount; j++) {
+ endIndex = line.indexOf(" ", startIndex);
+ weights[j] = Float.parseFloat(line.substring(startIndex, endIndex));
+ startIndex = endIndex + 1;
+ }
+ outputLayer[i] = classifier.new SigmoidUnit(weights);
+ }
+
+ reader.close();
+
+ classifier.mHiddenLayer = hiddenLayer;
+ classifier.mOutputLayer = outputLayer;
+
+ return classifier;
+
+ } catch (IOException ex) {
+ Log.d(LOGTAG, "Failed to save gestures:", ex);
+ }
+ return null;
+ }
+}