1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
|
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.net;
import android.os.SystemClock;
import android.util.Log;
import java.io.IOException;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;
/**
* {@hide}
*
* Simple SNTP client class for retrieving network time.
*
* Sample usage:
* <pre>SntpClient client = new SntpClient();
* if (client.requestTime("time.foo.com")) {
* long now = client.getNtpTime() + SystemClock.elapsedRealtime() - client.getNtpTimeReference();
* }
* </pre>
*/
public class SntpClient
{
private static final String TAG = "SntpClient";
private static final int REFERENCE_TIME_OFFSET = 16;
private static final int ORIGINATE_TIME_OFFSET = 24;
private static final int RECEIVE_TIME_OFFSET = 32;
private static final int TRANSMIT_TIME_OFFSET = 40;
private static final int NTP_PACKET_SIZE = 48;
private static final int NTP_PORT = 123;
private static final int NTP_MODE_CLIENT = 3;
private static final int NTP_VERSION = 3;
// Number of seconds between Jan 1, 1900 and Jan 1, 1970
// 70 years plus 17 leap days
private static final long OFFSET_1900_TO_1970 = ((365L * 70L) + 17L) * 24L * 60L * 60L;
// system time computed from NTP server response
private long mNtpTime;
// value of SystemClock.elapsedRealtime() corresponding to mNtpTime
private long mNtpTimeReference;
// round trip time in milliseconds
private long mRoundTripTime;
/**
* Sends an SNTP request to the given host and processes the response.
*
* @param host host name of the server.
* @param timeout network timeout in milliseconds.
* @return true if the transaction was successful.
*/
public boolean requestTime(String host, int timeout) {
DatagramSocket socket = null;
try {
socket = new DatagramSocket();
socket.setSoTimeout(timeout);
InetAddress address = InetAddress.getByName(host);
byte[] buffer = new byte[NTP_PACKET_SIZE];
DatagramPacket request = new DatagramPacket(buffer, buffer.length, address, NTP_PORT);
// set mode = 3 (client) and version = 3
// mode is in low 3 bits of first byte
// version is in bits 3-5 of first byte
buffer[0] = NTP_MODE_CLIENT | (NTP_VERSION << 3);
// get current time and write it to the request packet
long requestTime = System.currentTimeMillis();
long requestTicks = SystemClock.elapsedRealtime();
writeTimeStamp(buffer, TRANSMIT_TIME_OFFSET, requestTime);
socket.send(request);
// read the response
DatagramPacket response = new DatagramPacket(buffer, buffer.length);
socket.receive(response);
long responseTicks = SystemClock.elapsedRealtime();
long responseTime = requestTime + (responseTicks - requestTicks);
// extract the results
long originateTime = readTimeStamp(buffer, ORIGINATE_TIME_OFFSET);
long receiveTime = readTimeStamp(buffer, RECEIVE_TIME_OFFSET);
long transmitTime = readTimeStamp(buffer, TRANSMIT_TIME_OFFSET);
long roundTripTime = responseTicks - requestTicks - (transmitTime - receiveTime);
// receiveTime = originateTime + transit + skew
// responseTime = transmitTime + transit - skew
// clockOffset = ((receiveTime - originateTime) + (transmitTime - responseTime))/2
// = ((originateTime + transit + skew - originateTime) +
// (transmitTime - (transmitTime + transit - skew)))/2
// = ((transit + skew) + (transmitTime - transmitTime - transit + skew))/2
// = (transit + skew - transit + skew)/2
// = (2 * skew)/2 = skew
long clockOffset = ((receiveTime - originateTime) + (transmitTime - responseTime))/2;
// if (false) Log.d(TAG, "round trip: " + roundTripTime + " ms");
// if (false) Log.d(TAG, "clock offset: " + clockOffset + " ms");
// save our results - use the times on this side of the network latency
// (response rather than request time)
mNtpTime = responseTime + clockOffset;
mNtpTimeReference = responseTicks;
mRoundTripTime = roundTripTime;
} catch (Exception e) {
if (false) Log.d(TAG, "request time failed: " + e);
return false;
} finally {
if (socket != null) {
socket.close();
}
}
return true;
}
/**
* Returns the time computed from the NTP transaction.
*
* @return time value computed from NTP server response.
*/
public long getNtpTime() {
return mNtpTime;
}
/**
* Returns the reference clock value (value of SystemClock.elapsedRealtime())
* corresponding to the NTP time.
*
* @return reference clock corresponding to the NTP time.
*/
public long getNtpTimeReference() {
return mNtpTimeReference;
}
/**
* Returns the round trip time of the NTP transaction
*
* @return round trip time in milliseconds.
*/
public long getRoundTripTime() {
return mRoundTripTime;
}
/**
* Reads an unsigned 32 bit big endian number from the given offset in the buffer.
*/
private long read32(byte[] buffer, int offset) {
byte b0 = buffer[offset];
byte b1 = buffer[offset+1];
byte b2 = buffer[offset+2];
byte b3 = buffer[offset+3];
// convert signed bytes to unsigned values
int i0 = ((b0 & 0x80) == 0x80 ? (b0 & 0x7F) + 0x80 : b0);
int i1 = ((b1 & 0x80) == 0x80 ? (b1 & 0x7F) + 0x80 : b1);
int i2 = ((b2 & 0x80) == 0x80 ? (b2 & 0x7F) + 0x80 : b2);
int i3 = ((b3 & 0x80) == 0x80 ? (b3 & 0x7F) + 0x80 : b3);
return ((long)i0 << 24) + ((long)i1 << 16) + ((long)i2 << 8) + (long)i3;
}
/**
* Reads the NTP time stamp at the given offset in the buffer and returns
* it as a system time (milliseconds since January 1, 1970).
*/
private long readTimeStamp(byte[] buffer, int offset) {
long seconds = read32(buffer, offset);
long fraction = read32(buffer, offset + 4);
return ((seconds - OFFSET_1900_TO_1970) * 1000) + ((fraction * 1000L) / 0x100000000L);
}
/**
* Writes system time (milliseconds since January 1, 1970) as an NTP time stamp
* at the given offset in the buffer.
*/
private void writeTimeStamp(byte[] buffer, int offset, long time) {
long seconds = time / 1000L;
long milliseconds = time - seconds * 1000L;
seconds += OFFSET_1900_TO_1970;
// write seconds in big endian format
buffer[offset++] = (byte)(seconds >> 24);
buffer[offset++] = (byte)(seconds >> 16);
buffer[offset++] = (byte)(seconds >> 8);
buffer[offset++] = (byte)(seconds >> 0);
long fraction = milliseconds * 0x100000000L / 1000L;
// write fraction in big endian format
buffer[offset++] = (byte)(fraction >> 24);
buffer[offset++] = (byte)(fraction >> 16);
buffer[offset++] = (byte)(fraction >> 8);
// low order bits should be random data
buffer[offset++] = (byte)(Math.random() * 255.0);
}
}
|