summaryrefslogtreecommitdiffstats
path: root/opengl/tests/hwc/hwcStress.cpp
blob: 7d7bc1f9cc30d0b06fa03c5fe3c3bdb5d6c7977e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
/*
 * Copyright (C) 2010 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 */

/*
 * Hardware Composer stress test
 *
 * Performs a pseudo-random (prandom) sequence of operations to the
 * Hardware Composer (HWC), for a specified number of passes or for
 * a specified period of time.  By default the period of time is FLT_MAX,
 * so that the number of passes will take precedence.
 *
 * The passes are grouped together, where (pass / passesPerGroup) specifies
 * which group a particular pass is in.  This causes every passesPerGroup
 * worth of sequential passes to be within the same group.  Computationally
 * intensive operations are performed just once at the beginning of a group
 * of passes and then used by all the passes in that group.  This is done
 * so as to increase both the average and peak rate of graphic operations,
 * by moving computationally intensive operations to the beginning of a group.
 * In particular, at the start of each group of passes a set of
 * graphic buffers are created, then used by the first and remaining
 * passes of that group of passes.
 *
 * The per-group initialization of the graphic buffers is performed
 * by a function called initFrames.  This function creates an array
 * of smart pointers to the graphic buffers, in the form of a vector
 * of vectors.  The array is accessed in row major order, so each
 * row is a vector of smart pointers.  All the pointers of a single
 * row point to graphic buffers which use the same pixel format and
 * have the same dimension, although it is likely that each one is
 * filled with a different color.  This is done so that after doing
 * the first HWC prepare then set call, subsequent set calls can
 * be made with each of the layer handles changed to a different
 * graphic buffer within the same row.  Since the graphic buffers
 * in a particular row have the same pixel format and dimension,
 * additional HWC set calls can be made, without having to perform
 * an HWC prepare call.
 *
 * This test supports the following command-line options:
 *
 *   -v        Verbose
 *   -s num    Starting pass
 *   -e num    Ending pass
 *   -p num    Execute the single pass specified by num
 *   -n num    Number of set operations to perform after each prepare operation
 *   -t float  Maximum time in seconds to execute the test
 *   -d float  Delay in seconds performed after each set operation
 *   -D float  Delay in seconds performed after the last pass is executed
 *
 * Typically the test is executed for a large range of passes.  By default
 * passes 0 through 99999 (100,000 passes) are executed.  Although this test
 * does not validate the generated image, at times it is useful to reexecute
 * a particular pass and leave the displayed image on the screen for an
 * extended period of time.  This can be done either by setting the -s
 * and -e options to the desired pass, along with a large value for -D.
 * This can also be done via the -p option, again with a large value for
 * the -D options.
 *
 * So far this test only contains code to create graphic buffers with
 * a continuous solid color.  Although this test is unable to validate the
 * image produced, any image that contains other than rectangles of a solid
 * color are incorrect.  Note that the rectangles may use a transparent
 * color and have a blending operation that causes the color in overlapping
 * rectangles to be mixed.  In such cases the overlapping portions may have
 * a different color from the rest of the rectangle.
 */

#include <algorithm>
#include <assert.h>
#include <cerrno>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <libgen.h>
#include <sched.h>
#include <sstream>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <vector>

#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/wait.h>

#include <EGL/egl.h>
#include <EGL/eglext.h>
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>

#include <ui/FramebufferNativeWindow.h>
#include <ui/GraphicBuffer.h>

#define LOG_TAG "hwcStressTest"
#include <utils/Log.h>
#include <testUtil.h>

#include <hardware/hwcomposer.h>

#include <glTestLib.h>
#include <hwc/hwcTestLib.h>

using namespace std;
using namespace android;

const float maxSizeRatio = 1.3;  // Graphic buffers can be upto this munch
                                 // larger than the default screen size
const unsigned int passesPerGroup = 10; // A group of passes all use the same
                                        // graphic buffers

// Ratios at which rare and frequent conditions should be produced
const float rareRatio = 0.1;
const float freqRatio = 0.9;

// Defaults for command-line options
const bool defaultVerbose = false;
const unsigned int defaultStartPass = 0;
const unsigned int defaultEndPass = 99999;
const unsigned int defaultPerPassNumSet = 10;
const float defaultPerSetDelay = 0.0; // Default delay after each set
                                      // operation.  Default delay of
                                      // zero used so as to perform the
                                      // the set operations as quickly
                                      // as possible.
const float defaultEndDelay = 2.0; // Default delay between completion of
                                   // final pass and restart of framework
const float defaultDuration = FLT_MAX; // A fairly long time, so that
                                       // range of passes will have
                                       // precedence

// Command-line option settings
static bool verbose = defaultVerbose;
static unsigned int startPass = defaultStartPass;
static unsigned int endPass = defaultEndPass;
static unsigned int numSet = defaultPerPassNumSet;
static float perSetDelay = defaultPerSetDelay;
static float endDelay = defaultEndDelay;
static float duration = defaultDuration;

// Command-line mutual exclusion detection flags.
// Corresponding flag set true once an option is used.
bool eFlag, sFlag, pFlag;

#define MAXSTR               100
#define MAXCMD               200
#define BITSPERBYTE            8 // TODO: Obtain from <values.h>, once
                                 // it has been added

#define CMD_STOP_FRAMEWORK   "stop 2>&1"
#define CMD_START_FRAMEWORK  "start 2>&1"

#define NUMA(a) (sizeof(a) / sizeof(a [0]))
#define MEMCLR(addr, size) do { \
        memset((addr), 0, (size)); \
    } while (0)

// File scope constants
const unsigned int blendingOps[] = {
    HWC_BLENDING_NONE,
    HWC_BLENDING_PREMULT,
    HWC_BLENDING_COVERAGE,
};
const unsigned int layerFlags[] = {
    HWC_SKIP_LAYER,
};
const vector<unsigned int> vecLayerFlags(layerFlags,
    layerFlags + NUMA(layerFlags));

const unsigned int transformFlags[] = {
    HWC_TRANSFORM_FLIP_H,
    HWC_TRANSFORM_FLIP_V,
    HWC_TRANSFORM_ROT_90,
    // ROT_180 & ROT_270 intentionally not listed, because they
    // they are formed from combinations of the flags already listed.
};
const vector<unsigned int> vecTransformFlags(transformFlags,
    transformFlags + NUMA(transformFlags));

// File scope globals
static const int texUsage = GraphicBuffer::USAGE_HW_TEXTURE |
        GraphicBuffer::USAGE_SW_WRITE_RARELY;
static hwc_composer_device_t *hwcDevice;
static EGLDisplay dpy;
static EGLSurface surface;
static EGLint width, height;
static vector <vector <sp<GraphicBuffer> > > frames;

// File scope prototypes
void init(void);
void initFrames(unsigned int seed);
template <class T> vector<T> vectorRandSelect(const vector<T>& vec, size_t num);
template <class T> T vectorOr(const vector<T>& vec);

/*
 * Main
 *
 * Performs the following high-level sequence of operations:
 *
 *   1. Command-line parsing
 *
 *   2. Initialization
 *
 *   3. For each pass:
 *
 *        a. If pass is first pass or in a different group from the
 *           previous pass, initialize the array of graphic buffers.
 *
 *        b. Create a HWC list with room to specify a prandomly
 *           selected number of layers.
 *
 *        c. Select a subset of the rows from the graphic buffer array,
 *           such that there is a unique row to be used for each
 *           of the layers in the HWC list.
 *
 *        d. Prandomly fill in the HWC list with handles
 *           selected from any of the columns of the selected row.
 *
 *        e. Pass the populated list to the HWC prepare call.
 *
 *        f. Pass the populated list to the HWC set call.
 *
 *        g. If additional set calls are to be made, then for each
 *           additional set call, select a new set of handles and
 *           perform the set call.
 */
int
main(int argc, char *argv[])
{
    int rv, opt;
    char *chptr;
    unsigned int pass;
    char cmd[MAXCMD];
    struct timeval startTime, currentTime, delta;

    testSetLogCatTag(LOG_TAG);

    // Parse command line arguments
    while ((opt = getopt(argc, argv, "vp:d:D:n:s:e:t:?h")) != -1) {
        switch (opt) {
          case 'd': // Delay after each set operation
            perSetDelay = strtod(optarg, &chptr);
            if ((*chptr != '\0') || (perSetDelay < 0.0)) {
                testPrintE("Invalid command-line specified per pass delay of: "
                           "%s", optarg);
                exit(1);
            }
            break;

          case 'D': // End of test delay
                    // Delay between completion of final pass and restart
                    // of framework
            endDelay = strtod(optarg, &chptr);
            if ((*chptr != '\0') || (endDelay < 0.0)) {
                testPrintE("Invalid command-line specified end of test delay "
                           "of: %s", optarg);
                exit(2);
            }
            break;

          case 't': // Duration
            duration = strtod(optarg, &chptr);
            if ((*chptr != '\0') || (duration < 0.0)) {
                testPrintE("Invalid command-line specified duration of: %s",
                           optarg);
                exit(3);
            }
            break;

          case 'n': // Num set operations per pass
            numSet = strtoul(optarg, &chptr, 10);
            if (*chptr != '\0') {
                testPrintE("Invalid command-line specified num set per pass "
                           "of: %s", optarg);
                exit(4);
            }
            break;

          case 's': // Starting Pass
            sFlag = true;
            if (pFlag) {
                testPrintE("Invalid combination of command-line options.");
                testPrintE("  The -p option is mutually exclusive from the");
                testPrintE("  -s and -e options.");
                exit(5);
            }
            startPass = strtoul(optarg, &chptr, 10);
            if (*chptr != '\0') {
                testPrintE("Invalid command-line specified starting pass "
                           "of: %s", optarg);
                exit(6);
            }
            break;

          case 'e': // Ending Pass
            eFlag = true;
            if (pFlag) {
                testPrintE("Invalid combination of command-line options.");
                testPrintE("  The -p option is mutually exclusive from the");
                testPrintE("  -s and -e options.");
                exit(7);
            }
            endPass = strtoul(optarg, &chptr, 10);
            if (*chptr != '\0') {
                testPrintE("Invalid command-line specified ending pass "
                           "of: %s", optarg);
                exit(8);
            }
            break;

          case 'p': // Run a single specified pass
            pFlag = true;
            if (sFlag || eFlag) {
                testPrintE("Invalid combination of command-line options.");
                testPrintE("  The -p option is mutually exclusive from the");
                testPrintE("  -s and -e options.");
                exit(9);
            }
            startPass = endPass = strtoul(optarg, &chptr, 10);
            if (*chptr != '\0') {
                testPrintE("Invalid command-line specified pass of: %s",
                           optarg);
                exit(10);
            }
            break;

          case 'v': // Verbose
            verbose = true;
            break;

          case 'h': // Help
          case '?':
          default:
            testPrintE("  %s [options]", basename(argv[0]));
            testPrintE("    options:");
            testPrintE("      -p Execute specified pass");
            testPrintE("      -s Starting pass");
            testPrintE("      -e Ending pass");
            testPrintE("      -t Duration");
            testPrintE("      -d Delay after each set operation");
            testPrintE("      -D End of test delay");
            testPrintE("      -n Num set operations per pass");
            testPrintE("      -v Verbose");
            exit(((optopt == 0) || (optopt == '?')) ? 0 : 11);
        }
    }
    if (endPass < startPass) {
        testPrintE("Unexpected ending pass before starting pass");
        testPrintE("  startPass: %u endPass: %u", startPass, endPass);
        exit(12);
    }
    if (argc != optind) {
        testPrintE("Unexpected command-line postional argument");
        testPrintE("  %s [-s start_pass] [-e end_pass] [-t duration]",
            basename(argv[0]));
        exit(13);
    }
    testPrintI("duration: %g", duration);
    testPrintI("startPass: %u", startPass);
    testPrintI("endPass: %u", endPass);
    testPrintI("numSet: %u", numSet);

    // Stop framework
    rv = snprintf(cmd, sizeof(cmd), "%s", CMD_STOP_FRAMEWORK);
    if (rv >= (signed) sizeof(cmd) - 1) {
        testPrintE("Command too long for: %s", CMD_STOP_FRAMEWORK);
        exit(14);
    }
    testExecCmd(cmd);
    testDelay(1.0); // TODO - need means to query whether asyncronous stop
                    // framework operation has completed.  For now, just wait
                    // a long time.

    init();

    // For each pass
    gettimeofday(&startTime, NULL);
    for (pass = startPass; pass <= endPass; pass++) {
        // Stop if duration of work has already been performed
        gettimeofday(&currentTime, NULL);
        delta = tvDelta(&startTime, &currentTime);
        if (tv2double(&delta) > duration) { break; }

        // Regenerate a new set of test frames when this pass is
        // either the first pass or is in a different group then
        // the previous pass.  A group of passes are passes that
        // all have the same quotient when their pass number is
        // divided by passesPerGroup.
        if ((pass == startPass)
            || ((pass / passesPerGroup) != ((pass - 1) / passesPerGroup))) {
            initFrames(pass / passesPerGroup);
        }

        testPrintI("==== Starting pass: %u", pass);

        // Cause deterministic sequence of prandom numbers to be
        // generated for this pass.
        srand48(pass);

        hwc_layer_list_t *list;
        list = hwcTestCreateLayerList(testRandMod(frames.size()) + 1);
        if (list == NULL) {
            testPrintE("hwcTestCreateLayerList failed");
            exit(20);
        }

        // Prandomly select a subset of frames to be used by this pass.
        vector <vector <sp<GraphicBuffer> > > selectedFrames;
        selectedFrames = vectorRandSelect(frames, list->numHwLayers);

        // Any transform tends to create a layer that the hardware
        // composer is unable to support and thus has to leave for
        // SurfaceFlinger.  Place heavy bias on specifying no transforms.
        bool noTransform = testRandFract() > rareRatio;

        for (unsigned int n1 = 0; n1 < list->numHwLayers; n1++) {
            unsigned int idx = testRandMod(selectedFrames[n1].size());
            sp<GraphicBuffer> gBuf = selectedFrames[n1][idx];
            hwc_layer_t *layer = &list->hwLayers[n1];
            layer->handle = gBuf->handle;

            layer->blending = blendingOps[testRandMod(NUMA(blendingOps))];
            layer->flags = (testRandFract() > rareRatio) ? 0
                : vectorOr(vectorRandSelect(vecLayerFlags,
                           testRandMod(vecLayerFlags.size() + 1)));
            layer->transform = (noTransform || testRandFract() > rareRatio) ? 0
                : vectorOr(vectorRandSelect(vecTransformFlags,
                           testRandMod(vecTransformFlags.size() + 1)));
            layer->sourceCrop.left = testRandMod(gBuf->getWidth());
            layer->sourceCrop.top = testRandMod(gBuf->getHeight());
            layer->sourceCrop.right = layer->sourceCrop.left
                + testRandMod(gBuf->getWidth() - layer->sourceCrop.left) + 1;
            layer->sourceCrop.bottom = layer->sourceCrop.top
                + testRandMod(gBuf->getHeight() - layer->sourceCrop.top) + 1;
            layer->displayFrame.left = testRandMod(width);
            layer->displayFrame.top = testRandMod(height);
            layer->displayFrame.right = layer->displayFrame.left
                + testRandMod(width - layer->displayFrame.left) + 1;
            layer->displayFrame.bottom = layer->displayFrame.top
                + testRandMod(height - layer->displayFrame.top) + 1;

            // Increase the frequency that a scale factor of 1.0 from
            // the sourceCrop to displayFrame occurs.  This is the
            // most common scale factor used by applications and would
            // be rarely produced by this stress test without this
            // logic.
            if (testRandFract() <= freqRatio) {
                // Only change to scale factor to 1.0 if both the
                // width and height will fit.
                int sourceWidth = layer->sourceCrop.right
                                  - layer->sourceCrop.left;
                int sourceHeight = layer->sourceCrop.bottom
                                   - layer->sourceCrop.top;
                if (((layer->displayFrame.left + sourceWidth) <= width)
                    && ((layer->displayFrame.top + sourceHeight) <= height)) {
                    layer->displayFrame.right = layer->displayFrame.left
                                                + sourceWidth;
                    layer->displayFrame.bottom = layer->displayFrame.top
                                                 + sourceHeight;
                }
            }

            layer->visibleRegionScreen.numRects = 1;
            layer->visibleRegionScreen.rects = &layer->displayFrame;
        }

        // Perform prepare operation
        if (verbose) { testPrintI("Prepare:"); hwcTestDisplayList(list); }
        hwcDevice->prepare(hwcDevice, list);
        if (verbose) {
            testPrintI("Post Prepare:");
            hwcTestDisplayListPrepareModifiable(list);
        }

        // Turn off the geometry changed flag
        list->flags &= ~HWC_GEOMETRY_CHANGED;

        // Perform the set operation(s)
        if (verbose) {testPrintI("Set:"); }
        for (unsigned int n1 = 0; n1 < numSet; n1++) {
            if (verbose) { hwcTestDisplayListHandles(list); }
            hwcDevice->set(hwcDevice, dpy, surface, list);

            // Prandomly select a new set of handles
            for (unsigned int n1 = 0; n1 < list->numHwLayers; n1++) {
                unsigned int idx = testRandMod(selectedFrames[n1].size());
                sp<GraphicBuffer> gBuf = selectedFrames[n1][idx];
                hwc_layer_t *layer = &list->hwLayers[n1];
                layer->handle = (native_handle_t *) gBuf->handle;
            }

            testDelay(perSetDelay);
        }

        hwcTestFreeLayerList(list);
        testPrintI("==== Completed pass: %u", pass);
    }

    testDelay(endDelay);

    // Start framework
    rv = snprintf(cmd, sizeof(cmd), "%s", CMD_START_FRAMEWORK);
    if (rv >= (signed) sizeof(cmd) - 1) {
        testPrintE("Command too long for: %s", CMD_START_FRAMEWORK);
        exit(21);
    }
    testExecCmd(cmd);

    testPrintI("Successfully completed %u passes", pass - startPass);

    return 0;
}

void init(void)
{
    srand48(0); // Defensively set pseudo random number generator.
                // Should not need to set this, because a stress test
                // sets the seed on each pass.  Defensively set it here
                // so that future code that uses pseudo random numbers
                // before the first pass will be deterministic.

    hwcTestInitDisplay(verbose, &dpy, &surface, &width, &height);

    hwcTestOpenHwc(&hwcDevice);
}

/*
 * Initialize Frames
 *
 * Creates an array of graphic buffers, within the global variable
 * named frames.  The graphic buffers are contained within a vector of
 * vectors.  All the graphic buffers in a particular row are of the same
 * format and dimension.  Each graphic buffer is uniformly filled with a
 * prandomly selected color.  It is likely that each buffer, even
 * in the same row, will be filled with a unique color.
 */
void initFrames(unsigned int seed)
{
    int rv;
    const size_t maxRows = 5;
    const size_t minCols = 2;  // Need at least double buffering
    const size_t maxCols = 4;  // One more than triple buffering

    if (verbose) { testPrintI("initFrames seed: %u", seed); }
    srand48(seed);
    size_t rows = testRandMod(maxRows) + 1;

    frames.clear();
    frames.resize(rows);

    for (unsigned int row = 0; row < rows; row++) {
        // All frames within a row have to have the same format and
        // dimensions.  Width and height need to be >= 1.
        unsigned int formatIdx = testRandMod(NUMA(hwcTestGraphicFormat));
        const struct hwcTestGraphicFormat *formatPtr
            = &hwcTestGraphicFormat[formatIdx];
        int format = formatPtr->format;

        // Pick width and height, which must be >= 1 and the size
        // mod the wMod/hMod value must be equal to 0.
        size_t w = (width * maxSizeRatio) * testRandFract();
        size_t h = (height * maxSizeRatio) * testRandFract();
        w = max(1u, w);
        h = max(1u, h);
        if ((w % formatPtr->wMod) != 0) {
            w += formatPtr->wMod - (w % formatPtr->wMod);
        }
        if ((h % formatPtr->hMod) != 0) {
            h += formatPtr->hMod - (h % formatPtr->hMod);
        }
        if (verbose) {
            testPrintI("  frame %u width: %u height: %u format: %u %s",
                       row, w, h, format, hwcTestGraphicFormat2str(format));
        }

        size_t cols = testRandMod((maxCols + 1) - minCols) + minCols;
        frames[row].resize(cols);
        for (unsigned int col = 0; col < cols; col++) {
            ColorFract color(testRandFract(), testRandFract(), testRandFract());
            float alpha = testRandFract();

            frames[row][col] = new GraphicBuffer(w, h, format, texUsage);
            if ((rv = frames[row][col]->initCheck()) != NO_ERROR) {
                testPrintE("GraphicBuffer initCheck failed, rv: %i", rv);
                testPrintE("  frame %u width: %u height: %u format: %u %s",
                           row, w, h, format, hwcTestGraphicFormat2str(format));
                exit(80);
            }

            hwcTestFillColor(frames[row][col].get(), color, alpha);
            if (verbose) {
                testPrintI("    buf: %p handle: %p color: %s alpha: %f",
                           frames[row][col].get(), frames[row][col]->handle,
                           string(color).c_str(), alpha);
            }
        }
    }
}

/*
 * Vector Random Select
 *
 * Prandomly selects and returns num elements from vec.
 */
template <class T>
vector<T> vectorRandSelect(const vector<T>& vec, size_t num)
{
    vector<T> rv = vec;

    while (rv.size() > num) {
        rv.erase(rv.begin() + testRandMod(rv.size()));
    }

    return rv;
}

/*
 * Vector Or
 *
 * Or's togethen the values of each element of vec and returns the result.
 */
template <class T>
T vectorOr(const vector<T>& vec)
{
    T rv = 0;

    for (size_t n1 = 0; n1 < vec.size(); n1++) {
        rv |= vec[n1];
    }

    return rv;
}