summaryrefslogtreecommitdiffstats
path: root/services/sensorservice/legacy/LegacyRotationVectorSensor.cpp
blob: a58878df3c7364121ed8859441dd2de227c00128 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
/*
 * Copyright (C) 2010 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <stdint.h>
#include <math.h>
#include <sys/types.h>

#include <utils/Errors.h>

#include <hardware/sensors.h>

#include "LegacyRotationVectorSensor.h"

namespace android {
// ---------------------------------------------------------------------------

template <typename T>
static inline T clamp(T v) {
    return v < 0 ? 0 : v;
}

LegacyRotationVectorSensor::LegacyRotationVectorSensor()
    : mSensorDevice(SensorDevice::getInstance()),
      mSensorFusion(SensorFusion::getInstance()),
      mALowPass(M_SQRT1_2, 1.5f),
      mAX(mALowPass), mAY(mALowPass), mAZ(mALowPass),
      mMLowPass(M_SQRT1_2, 1.5f),
      mMX(mMLowPass), mMY(mMLowPass), mMZ(mMLowPass)
{
}

bool LegacyRotationVectorSensor::process(sensors_event_t* outEvent,
        const sensors_event_t& event)
{
    const static double NS2S = 1.0 / 1000000000.0;
    if (event.type == SENSOR_TYPE_MAGNETIC_FIELD) {
        const double now = event.timestamp * NS2S;
        if (mMagTime == 0) {
            mMagData[0] = mMX.init(event.magnetic.x);
            mMagData[1] = mMY.init(event.magnetic.y);
            mMagData[2] = mMZ.init(event.magnetic.z);
        } else {
            double dT = now - mMagTime;
            mMLowPass.setSamplingPeriod(dT);
            mMagData[0] = mMX(event.magnetic.x);
            mMagData[1] = mMY(event.magnetic.y);
            mMagData[2] = mMZ(event.magnetic.z);
        }
        mMagTime = now;
    }
    if (event.type == SENSOR_TYPE_ACCELEROMETER) {
        const double now = event.timestamp * NS2S;
        float Ax, Ay, Az;
        if (mAccTime == 0) {
            Ax = mAX.init(event.acceleration.x);
            Ay = mAY.init(event.acceleration.y);
            Az = mAZ.init(event.acceleration.z);
        } else {
            double dT = now - mAccTime;
            mALowPass.setSamplingPeriod(dT);
            Ax = mAX(event.acceleration.x);
            Ay = mAY(event.acceleration.y);
            Az = mAZ(event.acceleration.z);
        }
        mAccTime = now;
        const float Ex = mMagData[0];
        const float Ey = mMagData[1];
        const float Ez = mMagData[2];
        float Hx = Ey*Az - Ez*Ay;
        float Hy = Ez*Ax - Ex*Az;
        float Hz = Ex*Ay - Ey*Ax;
        const float normH = sqrtf(Hx*Hx + Hy*Hy + Hz*Hz);
        if (normH < 0.1f) {
            // device is close to free fall (or in space?), or close to
            // magnetic north pole. Typical values are  > 100.
            return false;
        }
        const float invH = 1.0f / normH;
        const float invA = 1.0f / sqrtf(Ax*Ax + Ay*Ay + Az*Az);
        Hx *= invH;
        Hy *= invH;
        Hz *= invH;
        Ax *= invA;
        Ay *= invA;
        Az *= invA;
        const float Mx = Ay*Hz - Az*Hy;
        const float My = Az*Hx - Ax*Hz;
        const float Mz = Ax*Hy - Ay*Hx;

        // matrix to rotation vector (normalized quaternion)
        float qw = sqrtf( clamp( Hx + My + Az + 1) * 0.25f );
        float qx = sqrtf( clamp( Hx - My - Az + 1) * 0.25f );
        float qy = sqrtf( clamp(-Hx + My - Az + 1) * 0.25f );
        float qz = sqrtf( clamp(-Hx - My + Az + 1) * 0.25f );
        qx = copysignf(qx, Ay - Mz);
        qy = copysignf(qy, Hz - Ax);
        qz = copysignf(qz, Mx - Hy);

        // this quaternion is guaranteed to be normalized, by construction
        // of the rotation matrix.

        *outEvent = event;
        outEvent->data[0] = qx;
        outEvent->data[1] = qy;
        outEvent->data[2] = qz;
        outEvent->data[3] = qw;
        outEvent->sensor = '_rov';
        outEvent->type = SENSOR_TYPE_ROTATION_VECTOR;
        return true;
    }
    return false;
}

status_t LegacyRotationVectorSensor::activate(void* ident, bool enabled) {
    if (enabled) {
        mMagTime = 0;
        mAccTime = 0;
    }
    return mSensorFusion.activate(this, enabled);
}

status_t LegacyRotationVectorSensor::setDelay(void* ident, int handle, int64_t ns) {
    return mSensorFusion.setDelay(this, ns);
}

Sensor LegacyRotationVectorSensor::getSensor() const {
    sensor_t hwSensor;
    hwSensor.name       = "Rotation Vector Sensor";
    hwSensor.vendor     = "Google Inc.";
    hwSensor.version    = 3;
    hwSensor.handle     = '_rov';
    hwSensor.type       = SENSOR_TYPE_ROTATION_VECTOR;
    hwSensor.maxRange   = 1;
    hwSensor.resolution = 1.0f / (1<<24);
    hwSensor.power      = mSensorFusion.getPowerUsage();
    hwSensor.minDelay   = mSensorFusion.getMinDelay();
    Sensor sensor(&hwSensor);
    return sensor;
}

// ---------------------------------------------------------------------------
}; // namespace android