aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/scsi/sym53c8xx_2/sym_hipd.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/scsi/sym53c8xx_2/sym_hipd.c
downloadkernel_samsung_smdk4412-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.zip
kernel_samsung_smdk4412-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.gz
kernel_samsung_smdk4412-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.bz2
Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'drivers/scsi/sym53c8xx_2/sym_hipd.c')
-rw-r--r--drivers/scsi/sym53c8xx_2/sym_hipd.c5865
1 files changed, 5865 insertions, 0 deletions
diff --git a/drivers/scsi/sym53c8xx_2/sym_hipd.c b/drivers/scsi/sym53c8xx_2/sym_hipd.c
new file mode 100644
index 0000000..50a176b
--- /dev/null
+++ b/drivers/scsi/sym53c8xx_2/sym_hipd.c
@@ -0,0 +1,5865 @@
+/*
+ * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
+ * of PCI-SCSI IO processors.
+ *
+ * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
+ * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx>
+ *
+ * This driver is derived from the Linux sym53c8xx driver.
+ * Copyright (C) 1998-2000 Gerard Roudier
+ *
+ * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
+ * a port of the FreeBSD ncr driver to Linux-1.2.13.
+ *
+ * The original ncr driver has been written for 386bsd and FreeBSD by
+ * Wolfgang Stanglmeier <wolf@cologne.de>
+ * Stefan Esser <se@mi.Uni-Koeln.de>
+ * Copyright (C) 1994 Wolfgang Stanglmeier
+ *
+ * Other major contributions:
+ *
+ * NVRAM detection and reading.
+ * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
+ *
+ *-----------------------------------------------------------------------------
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+#include "sym_glue.h"
+#include "sym_nvram.h"
+
+#if 0
+#define SYM_DEBUG_GENERIC_SUPPORT
+#endif
+
+/*
+ * Needed function prototypes.
+ */
+static void sym_int_ma (struct sym_hcb *np);
+static void sym_int_sir (struct sym_hcb *np);
+static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np);
+static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa);
+static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln);
+static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp);
+static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp);
+static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp);
+
+/*
+ * Print a buffer in hexadecimal format with a ".\n" at end.
+ */
+static void sym_printl_hex(u_char *p, int n)
+{
+ while (n-- > 0)
+ printf (" %x", *p++);
+ printf (".\n");
+}
+
+/*
+ * Print out the content of a SCSI message.
+ */
+static int sym_show_msg (u_char * msg)
+{
+ u_char i;
+ printf ("%x",*msg);
+ if (*msg==M_EXTENDED) {
+ for (i=1;i<8;i++) {
+ if (i-1>msg[1]) break;
+ printf ("-%x",msg[i]);
+ }
+ return (i+1);
+ } else if ((*msg & 0xf0) == 0x20) {
+ printf ("-%x",msg[1]);
+ return (2);
+ }
+ return (1);
+}
+
+static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg)
+{
+ sym_print_addr(cp->cmd, "%s: ", label);
+
+ sym_show_msg(msg);
+ printf(".\n");
+}
+
+static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg)
+{
+ struct sym_tcb *tp = &np->target[target];
+ dev_info(&tp->sdev->sdev_target->dev, "%s: ", label);
+
+ sym_show_msg(msg);
+ printf(".\n");
+}
+
+/*
+ * Print something that tells about extended errors.
+ */
+void sym_print_xerr(struct scsi_cmnd *cmd, int x_status)
+{
+ if (x_status & XE_PARITY_ERR) {
+ sym_print_addr(cmd, "unrecovered SCSI parity error.\n");
+ }
+ if (x_status & XE_EXTRA_DATA) {
+ sym_print_addr(cmd, "extraneous data discarded.\n");
+ }
+ if (x_status & XE_BAD_PHASE) {
+ sym_print_addr(cmd, "illegal scsi phase (4/5).\n");
+ }
+ if (x_status & XE_SODL_UNRUN) {
+ sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n");
+ }
+ if (x_status & XE_SWIDE_OVRUN) {
+ sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n");
+ }
+}
+
+/*
+ * Return a string for SCSI BUS mode.
+ */
+static char *sym_scsi_bus_mode(int mode)
+{
+ switch(mode) {
+ case SMODE_HVD: return "HVD";
+ case SMODE_SE: return "SE";
+ case SMODE_LVD: return "LVD";
+ }
+ return "??";
+}
+
+/*
+ * Soft reset the chip.
+ *
+ * Raising SRST when the chip is running may cause
+ * problems on dual function chips (see below).
+ * On the other hand, LVD devices need some delay
+ * to settle and report actual BUS mode in STEST4.
+ */
+static void sym_chip_reset (struct sym_hcb *np)
+{
+ OUTB(np, nc_istat, SRST);
+ udelay(10);
+ OUTB(np, nc_istat, 0);
+ udelay(2000); /* For BUS MODE to settle */
+}
+
+/*
+ * Really soft reset the chip.:)
+ *
+ * Some 896 and 876 chip revisions may hang-up if we set
+ * the SRST (soft reset) bit at the wrong time when SCRIPTS
+ * are running.
+ * So, we need to abort the current operation prior to
+ * soft resetting the chip.
+ */
+static void sym_soft_reset (struct sym_hcb *np)
+{
+ u_char istat = 0;
+ int i;
+
+ if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN))
+ goto do_chip_reset;
+
+ OUTB(np, nc_istat, CABRT);
+ for (i = 100000 ; i ; --i) {
+ istat = INB(np, nc_istat);
+ if (istat & SIP) {
+ INW(np, nc_sist);
+ }
+ else if (istat & DIP) {
+ if (INB(np, nc_dstat) & ABRT)
+ break;
+ }
+ udelay(5);
+ }
+ OUTB(np, nc_istat, 0);
+ if (!i)
+ printf("%s: unable to abort current chip operation, "
+ "ISTAT=0x%02x.\n", sym_name(np), istat);
+do_chip_reset:
+ sym_chip_reset(np);
+}
+
+/*
+ * Start reset process.
+ *
+ * The interrupt handler will reinitialize the chip.
+ */
+static void sym_start_reset(struct sym_hcb *np)
+{
+ sym_reset_scsi_bus(np, 1);
+}
+
+int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int)
+{
+ u32 term;
+ int retv = 0;
+
+ sym_soft_reset(np); /* Soft reset the chip */
+ if (enab_int)
+ OUTW(np, nc_sien, RST);
+ /*
+ * Enable Tolerant, reset IRQD if present and
+ * properly set IRQ mode, prior to resetting the bus.
+ */
+ OUTB(np, nc_stest3, TE);
+ OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM));
+ OUTB(np, nc_scntl1, CRST);
+ udelay(200);
+
+ if (!SYM_SETUP_SCSI_BUS_CHECK)
+ goto out;
+ /*
+ * Check for no terminators or SCSI bus shorts to ground.
+ * Read SCSI data bus, data parity bits and control signals.
+ * We are expecting RESET to be TRUE and other signals to be
+ * FALSE.
+ */
+ term = INB(np, nc_sstat0);
+ term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
+ term |= ((INB(np, nc_sstat2) & 0x01) << 26) | /* sdp1 */
+ ((INW(np, nc_sbdl) & 0xff) << 9) | /* d7-0 */
+ ((INW(np, nc_sbdl) & 0xff00) << 10) | /* d15-8 */
+ INB(np, nc_sbcl); /* req ack bsy sel atn msg cd io */
+
+ if (!np->maxwide)
+ term &= 0x3ffff;
+
+ if (term != (2<<7)) {
+ printf("%s: suspicious SCSI data while resetting the BUS.\n",
+ sym_name(np));
+ printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
+ "0x%lx, expecting 0x%lx\n",
+ sym_name(np),
+ (np->features & FE_WIDE) ? "dp1,d15-8," : "",
+ (u_long)term, (u_long)(2<<7));
+ if (SYM_SETUP_SCSI_BUS_CHECK == 1)
+ retv = 1;
+ }
+out:
+ OUTB(np, nc_scntl1, 0);
+ return retv;
+}
+
+/*
+ * Select SCSI clock frequency
+ */
+static void sym_selectclock(struct sym_hcb *np, u_char scntl3)
+{
+ /*
+ * If multiplier not present or not selected, leave here.
+ */
+ if (np->multiplier <= 1) {
+ OUTB(np, nc_scntl3, scntl3);
+ return;
+ }
+
+ if (sym_verbose >= 2)
+ printf ("%s: enabling clock multiplier\n", sym_name(np));
+
+ OUTB(np, nc_stest1, DBLEN); /* Enable clock multiplier */
+ /*
+ * Wait for the LCKFRQ bit to be set if supported by the chip.
+ * Otherwise wait 50 micro-seconds (at least).
+ */
+ if (np->features & FE_LCKFRQ) {
+ int i = 20;
+ while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0)
+ udelay(20);
+ if (!i)
+ printf("%s: the chip cannot lock the frequency\n",
+ sym_name(np));
+ } else
+ udelay((50+10));
+ OUTB(np, nc_stest3, HSC); /* Halt the scsi clock */
+ OUTB(np, nc_scntl3, scntl3);
+ OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */
+ OUTB(np, nc_stest3, 0x00); /* Restart scsi clock */
+}
+
+
+/*
+ * Determine the chip's clock frequency.
+ *
+ * This is essential for the negotiation of the synchronous
+ * transfer rate.
+ *
+ * Note: we have to return the correct value.
+ * THERE IS NO SAFE DEFAULT VALUE.
+ *
+ * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
+ * 53C860 and 53C875 rev. 1 support fast20 transfers but
+ * do not have a clock doubler and so are provided with a
+ * 80 MHz clock. All other fast20 boards incorporate a doubler
+ * and so should be delivered with a 40 MHz clock.
+ * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
+ * clock and provide a clock quadrupler (160 Mhz).
+ */
+
+/*
+ * calculate SCSI clock frequency (in KHz)
+ */
+static unsigned getfreq (struct sym_hcb *np, int gen)
+{
+ unsigned int ms = 0;
+ unsigned int f;
+
+ /*
+ * Measure GEN timer delay in order
+ * to calculate SCSI clock frequency
+ *
+ * This code will never execute too
+ * many loop iterations (if DELAY is
+ * reasonably correct). It could get
+ * too low a delay (too high a freq.)
+ * if the CPU is slow executing the
+ * loop for some reason (an NMI, for
+ * example). For this reason we will
+ * if multiple measurements are to be
+ * performed trust the higher delay
+ * (lower frequency returned).
+ */
+ OUTW(np, nc_sien, 0); /* mask all scsi interrupts */
+ INW(np, nc_sist); /* clear pending scsi interrupt */
+ OUTB(np, nc_dien, 0); /* mask all dma interrupts */
+ INW(np, nc_sist); /* another one, just to be sure :) */
+ /*
+ * The C1010-33 core does not report GEN in SIST,
+ * if this interrupt is masked in SIEN.
+ * I don't know yet if the C1010-66 behaves the same way.
+ */
+ if (np->features & FE_C10) {
+ OUTW(np, nc_sien, GEN);
+ OUTB(np, nc_istat1, SIRQD);
+ }
+ OUTB(np, nc_scntl3, 4); /* set pre-scaler to divide by 3 */
+ OUTB(np, nc_stime1, 0); /* disable general purpose timer */
+ OUTB(np, nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */
+ while (!(INW(np, nc_sist) & GEN) && ms++ < 100000)
+ udelay(1000/4); /* count in 1/4 of ms */
+ OUTB(np, nc_stime1, 0); /* disable general purpose timer */
+ /*
+ * Undo C1010-33 specific settings.
+ */
+ if (np->features & FE_C10) {
+ OUTW(np, nc_sien, 0);
+ OUTB(np, nc_istat1, 0);
+ }
+ /*
+ * set prescaler to divide by whatever 0 means
+ * 0 ought to choose divide by 2, but appears
+ * to set divide by 3.5 mode in my 53c810 ...
+ */
+ OUTB(np, nc_scntl3, 0);
+
+ /*
+ * adjust for prescaler, and convert into KHz
+ */
+ f = ms ? ((1 << gen) * (4340*4)) / ms : 0;
+
+ /*
+ * The C1010-33 result is biased by a factor
+ * of 2/3 compared to earlier chips.
+ */
+ if (np->features & FE_C10)
+ f = (f * 2) / 3;
+
+ if (sym_verbose >= 2)
+ printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
+ sym_name(np), gen, ms/4, f);
+
+ return f;
+}
+
+static unsigned sym_getfreq (struct sym_hcb *np)
+{
+ u_int f1, f2;
+ int gen = 8;
+
+ getfreq (np, gen); /* throw away first result */
+ f1 = getfreq (np, gen);
+ f2 = getfreq (np, gen);
+ if (f1 > f2) f1 = f2; /* trust lower result */
+ return f1;
+}
+
+/*
+ * Get/probe chip SCSI clock frequency
+ */
+static void sym_getclock (struct sym_hcb *np, int mult)
+{
+ unsigned char scntl3 = np->sv_scntl3;
+ unsigned char stest1 = np->sv_stest1;
+ unsigned f1;
+
+ np->multiplier = 1;
+ f1 = 40000;
+ /*
+ * True with 875/895/896/895A with clock multiplier selected
+ */
+ if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
+ if (sym_verbose >= 2)
+ printf ("%s: clock multiplier found\n", sym_name(np));
+ np->multiplier = mult;
+ }
+
+ /*
+ * If multiplier not found or scntl3 not 7,5,3,
+ * reset chip and get frequency from general purpose timer.
+ * Otherwise trust scntl3 BIOS setting.
+ */
+ if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
+ OUTB(np, nc_stest1, 0); /* make sure doubler is OFF */
+ f1 = sym_getfreq (np);
+
+ if (sym_verbose)
+ printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
+
+ if (f1 < 45000) f1 = 40000;
+ else if (f1 < 55000) f1 = 50000;
+ else f1 = 80000;
+
+ if (f1 < 80000 && mult > 1) {
+ if (sym_verbose >= 2)
+ printf ("%s: clock multiplier assumed\n",
+ sym_name(np));
+ np->multiplier = mult;
+ }
+ } else {
+ if ((scntl3 & 7) == 3) f1 = 40000;
+ else if ((scntl3 & 7) == 5) f1 = 80000;
+ else f1 = 160000;
+
+ f1 /= np->multiplier;
+ }
+
+ /*
+ * Compute controller synchronous parameters.
+ */
+ f1 *= np->multiplier;
+ np->clock_khz = f1;
+}
+
+/*
+ * Get/probe PCI clock frequency
+ */
+static int sym_getpciclock (struct sym_hcb *np)
+{
+ int f = 0;
+
+ /*
+ * For now, we only need to know about the actual
+ * PCI BUS clock frequency for C1010-66 chips.
+ */
+#if 1
+ if (np->features & FE_66MHZ) {
+#else
+ if (1) {
+#endif
+ OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
+ f = sym_getfreq(np);
+ OUTB(np, nc_stest1, 0);
+ }
+ np->pciclk_khz = f;
+
+ return f;
+}
+
+/*
+ * SYMBIOS chip clock divisor table.
+ *
+ * Divisors are multiplied by 10,000,000 in order to make
+ * calculations more simple.
+ */
+#define _5M 5000000
+static u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
+
+/*
+ * Get clock factor and sync divisor for a given
+ * synchronous factor period.
+ */
+static int
+sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
+{
+ u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */
+ int div = np->clock_divn; /* Number of divisors supported */
+ u32 fak; /* Sync factor in sxfer */
+ u32 per; /* Period in tenths of ns */
+ u32 kpc; /* (per * clk) */
+ int ret;
+
+ /*
+ * Compute the synchronous period in tenths of nano-seconds
+ */
+ if (dt && sfac <= 9) per = 125;
+ else if (sfac <= 10) per = 250;
+ else if (sfac == 11) per = 303;
+ else if (sfac == 12) per = 500;
+ else per = 40 * sfac;
+ ret = per;
+
+ kpc = per * clk;
+ if (dt)
+ kpc <<= 1;
+
+ /*
+ * For earliest C10 revision 0, we cannot use extra
+ * clocks for the setting of the SCSI clocking.
+ * Note that this limits the lowest sync data transfer
+ * to 5 Mega-transfers per second and may result in
+ * using higher clock divisors.
+ */
+#if 1
+ if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
+ /*
+ * Look for the lowest clock divisor that allows an
+ * output speed not faster than the period.
+ */
+ while (div > 0) {
+ --div;
+ if (kpc > (div_10M[div] << 2)) {
+ ++div;
+ break;
+ }
+ }
+ fak = 0; /* No extra clocks */
+ if (div == np->clock_divn) { /* Are we too fast ? */
+ ret = -1;
+ }
+ *divp = div;
+ *fakp = fak;
+ return ret;
+ }
+#endif
+
+ /*
+ * Look for the greatest clock divisor that allows an
+ * input speed faster than the period.
+ */
+ while (div-- > 0)
+ if (kpc >= (div_10M[div] << 2)) break;
+
+ /*
+ * Calculate the lowest clock factor that allows an output
+ * speed not faster than the period, and the max output speed.
+ * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
+ * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
+ */
+ if (dt) {
+ fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
+ /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
+ } else {
+ fak = (kpc - 1) / div_10M[div] + 1 - 4;
+ /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
+ }
+
+ /*
+ * Check against our hardware limits, or bugs :).
+ */
+ if (fak > 2) {
+ fak = 2;
+ ret = -1;
+ }
+
+ /*
+ * Compute and return sync parameters.
+ */
+ *divp = div;
+ *fakp = fak;
+
+ return ret;
+}
+
+/*
+ * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
+ * 128 transfers. All chips support at least 16 transfers
+ * bursts. The 825A, 875 and 895 chips support bursts of up
+ * to 128 transfers and the 895A and 896 support bursts of up
+ * to 64 transfers. All other chips support up to 16
+ * transfers bursts.
+ *
+ * For PCI 32 bit data transfers each transfer is a DWORD.
+ * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
+ *
+ * We use log base 2 (burst length) as internal code, with
+ * value 0 meaning "burst disabled".
+ */
+
+/*
+ * Burst length from burst code.
+ */
+#define burst_length(bc) (!(bc))? 0 : 1 << (bc)
+
+/*
+ * Burst code from io register bits.
+ */
+#define burst_code(dmode, ctest4, ctest5) \
+ (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
+
+/*
+ * Set initial io register bits from burst code.
+ */
+static __inline void sym_init_burst(struct sym_hcb *np, u_char bc)
+{
+ np->rv_ctest4 &= ~0x80;
+ np->rv_dmode &= ~(0x3 << 6);
+ np->rv_ctest5 &= ~0x4;
+
+ if (!bc) {
+ np->rv_ctest4 |= 0x80;
+ }
+ else {
+ --bc;
+ np->rv_dmode |= ((bc & 0x3) << 6);
+ np->rv_ctest5 |= (bc & 0x4);
+ }
+}
+
+
+/*
+ * Print out the list of targets that have some flag disabled by user.
+ */
+static void sym_print_targets_flag(struct sym_hcb *np, int mask, char *msg)
+{
+ int cnt;
+ int i;
+
+ for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
+ if (i == np->myaddr)
+ continue;
+ if (np->target[i].usrflags & mask) {
+ if (!cnt++)
+ printf("%s: %s disabled for targets",
+ sym_name(np), msg);
+ printf(" %d", i);
+ }
+ }
+ if (cnt)
+ printf(".\n");
+}
+
+/*
+ * Save initial settings of some IO registers.
+ * Assumed to have been set by BIOS.
+ * We cannot reset the chip prior to reading the
+ * IO registers, since informations will be lost.
+ * Since the SCRIPTS processor may be running, this
+ * is not safe on paper, but it seems to work quite
+ * well. :)
+ */
+static void sym_save_initial_setting (struct sym_hcb *np)
+{
+ np->sv_scntl0 = INB(np, nc_scntl0) & 0x0a;
+ np->sv_scntl3 = INB(np, nc_scntl3) & 0x07;
+ np->sv_dmode = INB(np, nc_dmode) & 0xce;
+ np->sv_dcntl = INB(np, nc_dcntl) & 0xa8;
+ np->sv_ctest3 = INB(np, nc_ctest3) & 0x01;
+ np->sv_ctest4 = INB(np, nc_ctest4) & 0x80;
+ np->sv_gpcntl = INB(np, nc_gpcntl);
+ np->sv_stest1 = INB(np, nc_stest1);
+ np->sv_stest2 = INB(np, nc_stest2) & 0x20;
+ np->sv_stest4 = INB(np, nc_stest4);
+ if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */
+ np->sv_scntl4 = INB(np, nc_scntl4);
+ np->sv_ctest5 = INB(np, nc_ctest5) & 0x04;
+ }
+ else
+ np->sv_ctest5 = INB(np, nc_ctest5) & 0x24;
+}
+
+/*
+ * Prepare io register values used by sym_start_up()
+ * according to selected and supported features.
+ */
+static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram)
+{
+ u_char burst_max;
+ u32 period;
+ int i;
+
+ /*
+ * Wide ?
+ */
+ np->maxwide = (np->features & FE_WIDE)? 1 : 0;
+
+ /*
+ * Guess the frequency of the chip's clock.
+ */
+ if (np->features & (FE_ULTRA3 | FE_ULTRA2))
+ np->clock_khz = 160000;
+ else if (np->features & FE_ULTRA)
+ np->clock_khz = 80000;
+ else
+ np->clock_khz = 40000;
+
+ /*
+ * Get the clock multiplier factor.
+ */
+ if (np->features & FE_QUAD)
+ np->multiplier = 4;
+ else if (np->features & FE_DBLR)
+ np->multiplier = 2;
+ else
+ np->multiplier = 1;
+
+ /*
+ * Measure SCSI clock frequency for chips
+ * it may vary from assumed one.
+ */
+ if (np->features & FE_VARCLK)
+ sym_getclock(np, np->multiplier);
+
+ /*
+ * Divisor to be used for async (timer pre-scaler).
+ */
+ i = np->clock_divn - 1;
+ while (--i >= 0) {
+ if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
+ ++i;
+ break;
+ }
+ }
+ np->rv_scntl3 = i+1;
+
+ /*
+ * The C1010 uses hardwired divisors for async.
+ * So, we just throw away, the async. divisor.:-)
+ */
+ if (np->features & FE_C10)
+ np->rv_scntl3 = 0;
+
+ /*
+ * Minimum synchronous period factor supported by the chip.
+ * Btw, 'period' is in tenths of nanoseconds.
+ */
+ period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
+
+ if (period <= 250) np->minsync = 10;
+ else if (period <= 303) np->minsync = 11;
+ else if (period <= 500) np->minsync = 12;
+ else np->minsync = (period + 40 - 1) / 40;
+
+ /*
+ * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
+ */
+ if (np->minsync < 25 &&
+ !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
+ np->minsync = 25;
+ else if (np->minsync < 12 &&
+ !(np->features & (FE_ULTRA2|FE_ULTRA3)))
+ np->minsync = 12;
+
+ /*
+ * Maximum synchronous period factor supported by the chip.
+ */
+ period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
+ np->maxsync = period > 2540 ? 254 : period / 10;
+
+ /*
+ * If chip is a C1010, guess the sync limits in DT mode.
+ */
+ if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
+ if (np->clock_khz == 160000) {
+ np->minsync_dt = 9;
+ np->maxsync_dt = 50;
+ np->maxoffs_dt = nvram->type ? 62 : 31;
+ }
+ }
+
+ /*
+ * 64 bit addressing (895A/896/1010) ?
+ */
+ if (np->features & FE_DAC) {
+#if SYM_CONF_DMA_ADDRESSING_MODE == 0
+ np->rv_ccntl1 |= (DDAC);
+#elif SYM_CONF_DMA_ADDRESSING_MODE == 1
+ if (!np->use_dac)
+ np->rv_ccntl1 |= (DDAC);
+ else
+ np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
+#elif SYM_CONF_DMA_ADDRESSING_MODE == 2
+ if (!np->use_dac)
+ np->rv_ccntl1 |= (DDAC);
+ else
+ np->rv_ccntl1 |= (0 | EXTIBMV);
+#endif
+ }
+
+ /*
+ * Phase mismatch handled by SCRIPTS (895A/896/1010) ?
+ */
+ if (np->features & FE_NOPM)
+ np->rv_ccntl0 |= (ENPMJ);
+
+ /*
+ * C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
+ * In dual channel mode, contention occurs if internal cycles
+ * are used. Disable internal cycles.
+ */
+ if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 &&
+ np->revision_id < 0x1)
+ np->rv_ccntl0 |= DILS;
+
+ /*
+ * Select burst length (dwords)
+ */
+ burst_max = SYM_SETUP_BURST_ORDER;
+ if (burst_max == 255)
+ burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
+ np->sv_ctest5);
+ if (burst_max > 7)
+ burst_max = 7;
+ if (burst_max > np->maxburst)
+ burst_max = np->maxburst;
+
+ /*
+ * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
+ * This chip and the 860 Rev 1 may wrongly use PCI cache line
+ * based transactions on LOAD/STORE instructions. So we have
+ * to prevent these chips from using such PCI transactions in
+ * this driver. The generic ncr driver that does not use
+ * LOAD/STORE instructions does not need this work-around.
+ */
+ if ((np->device_id == PCI_DEVICE_ID_NCR_53C810 &&
+ np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
+ (np->device_id == PCI_DEVICE_ID_NCR_53C860 &&
+ np->revision_id <= 0x1))
+ np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
+
+ /*
+ * Select all supported special features.
+ * If we are using on-board RAM for scripts, prefetch (PFEN)
+ * does not help, but burst op fetch (BOF) does.
+ * Disabling PFEN makes sure BOF will be used.
+ */
+ if (np->features & FE_ERL)
+ np->rv_dmode |= ERL; /* Enable Read Line */
+ if (np->features & FE_BOF)
+ np->rv_dmode |= BOF; /* Burst Opcode Fetch */
+ if (np->features & FE_ERMP)
+ np->rv_dmode |= ERMP; /* Enable Read Multiple */
+#if 1
+ if ((np->features & FE_PFEN) && !np->ram_ba)
+#else
+ if (np->features & FE_PFEN)
+#endif
+ np->rv_dcntl |= PFEN; /* Prefetch Enable */
+ if (np->features & FE_CLSE)
+ np->rv_dcntl |= CLSE; /* Cache Line Size Enable */
+ if (np->features & FE_WRIE)
+ np->rv_ctest3 |= WRIE; /* Write and Invalidate */
+ if (np->features & FE_DFS)
+ np->rv_ctest5 |= DFS; /* Dma Fifo Size */
+
+ /*
+ * Select some other
+ */
+ np->rv_ctest4 |= MPEE; /* Master parity checking */
+ np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */
+
+ /*
+ * Get parity checking, host ID and verbose mode from NVRAM
+ */
+ np->myaddr = 255;
+ sym_nvram_setup_host(shost, np, nvram);
+
+ /*
+ * Get SCSI addr of host adapter (set by bios?).
+ */
+ if (np->myaddr == 255) {
+ np->myaddr = INB(np, nc_scid) & 0x07;
+ if (!np->myaddr)
+ np->myaddr = SYM_SETUP_HOST_ID;
+ }
+
+ /*
+ * Prepare initial io register bits for burst length
+ */
+ sym_init_burst(np, burst_max);
+
+ /*
+ * Set SCSI BUS mode.
+ * - LVD capable chips (895/895A/896/1010) report the
+ * current BUS mode through the STEST4 IO register.
+ * - For previous generation chips (825/825A/875),
+ * user has to tell us how to check against HVD,
+ * since a 100% safe algorithm is not possible.
+ */
+ np->scsi_mode = SMODE_SE;
+ if (np->features & (FE_ULTRA2|FE_ULTRA3))
+ np->scsi_mode = (np->sv_stest4 & SMODE);
+ else if (np->features & FE_DIFF) {
+ if (SYM_SETUP_SCSI_DIFF == 1) {
+ if (np->sv_scntl3) {
+ if (np->sv_stest2 & 0x20)
+ np->scsi_mode = SMODE_HVD;
+ }
+ else if (nvram->type == SYM_SYMBIOS_NVRAM) {
+ if (!(INB(np, nc_gpreg) & 0x08))
+ np->scsi_mode = SMODE_HVD;
+ }
+ }
+ else if (SYM_SETUP_SCSI_DIFF == 2)
+ np->scsi_mode = SMODE_HVD;
+ }
+ if (np->scsi_mode == SMODE_HVD)
+ np->rv_stest2 |= 0x20;
+
+ /*
+ * Set LED support from SCRIPTS.
+ * Ignore this feature for boards known to use a
+ * specific GPIO wiring and for the 895A, 896
+ * and 1010 that drive the LED directly.
+ */
+ if ((SYM_SETUP_SCSI_LED ||
+ (nvram->type == SYM_SYMBIOS_NVRAM ||
+ (nvram->type == SYM_TEKRAM_NVRAM &&
+ np->device_id == PCI_DEVICE_ID_NCR_53C895))) &&
+ !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
+ np->features |= FE_LED0;
+
+ /*
+ * Set irq mode.
+ */
+ switch(SYM_SETUP_IRQ_MODE & 3) {
+ case 2:
+ np->rv_dcntl |= IRQM;
+ break;
+ case 1:
+ np->rv_dcntl |= (np->sv_dcntl & IRQM);
+ break;
+ default:
+ break;
+ }
+
+ /*
+ * Configure targets according to driver setup.
+ * If NVRAM present get targets setup from NVRAM.
+ */
+ for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
+ struct sym_tcb *tp = &np->target[i];
+
+ tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
+ tp->usrtags = SYM_SETUP_MAX_TAG;
+
+ sym_nvram_setup_target(np, i, nvram);
+
+ if (!tp->usrtags)
+ tp->usrflags &= ~SYM_TAGS_ENABLED;
+ }
+
+ /*
+ * Let user know about the settings.
+ */
+ printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np),
+ sym_nvram_type(nvram), np->myaddr,
+ (np->features & FE_ULTRA3) ? 80 :
+ (np->features & FE_ULTRA2) ? 40 :
+ (np->features & FE_ULTRA) ? 20 : 10,
+ sym_scsi_bus_mode(np->scsi_mode),
+ (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity");
+ /*
+ * Tell him more on demand.
+ */
+ if (sym_verbose) {
+ printf("%s: %s IRQ line driver%s\n",
+ sym_name(np),
+ np->rv_dcntl & IRQM ? "totem pole" : "open drain",
+ np->ram_ba ? ", using on-chip SRAM" : "");
+ printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
+ if (np->features & FE_NOPM)
+ printf("%s: handling phase mismatch from SCRIPTS.\n",
+ sym_name(np));
+ }
+ /*
+ * And still more.
+ */
+ if (sym_verbose >= 2) {
+ printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
+ "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
+ sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
+ np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
+
+ printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
+ "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
+ sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
+ np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
+ }
+ /*
+ * Let user be aware of targets that have some disable flags set.
+ */
+ sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
+ if (sym_verbose)
+ sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
+ "SCAN FOR LUNS");
+
+ return 0;
+}
+
+/*
+ * Test the pci bus snoop logic :-(
+ *
+ * Has to be called with interrupts disabled.
+ */
+#ifndef CONFIG_SCSI_SYM53C8XX_IOMAPPED
+static int sym_regtest (struct sym_hcb *np)
+{
+ register volatile u32 data;
+ /*
+ * chip registers may NOT be cached.
+ * write 0xffffffff to a read only register area,
+ * and try to read it back.
+ */
+ data = 0xffffffff;
+ OUTL(np, nc_dstat, data);
+ data = INL(np, nc_dstat);
+#if 1
+ if (data == 0xffffffff) {
+#else
+ if ((data & 0xe2f0fffd) != 0x02000080) {
+#endif
+ printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
+ (unsigned) data);
+ return (0x10);
+ }
+ return (0);
+}
+#endif
+
+static int sym_snooptest (struct sym_hcb *np)
+{
+ u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
+ int i, err=0;
+#ifndef CONFIG_SCSI_SYM53C8XX_IOMAPPED
+ err |= sym_regtest (np);
+ if (err) return (err);
+#endif
+restart_test:
+ /*
+ * Enable Master Parity Checking as we intend
+ * to enable it for normal operations.
+ */
+ OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE));
+ /*
+ * init
+ */
+ pc = SCRIPTZ_BA(np, snooptest);
+ host_wr = 1;
+ sym_wr = 2;
+ /*
+ * Set memory and register.
+ */
+ np->scratch = cpu_to_scr(host_wr);
+ OUTL(np, nc_temp, sym_wr);
+ /*
+ * Start script (exchange values)
+ */
+ OUTL(np, nc_dsa, np->hcb_ba);
+ OUTL_DSP(np, pc);
+ /*
+ * Wait 'til done (with timeout)
+ */
+ for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
+ if (INB(np, nc_istat) & (INTF|SIP|DIP))
+ break;
+ if (i>=SYM_SNOOP_TIMEOUT) {
+ printf ("CACHE TEST FAILED: timeout.\n");
+ return (0x20);
+ }
+ /*
+ * Check for fatal DMA errors.
+ */
+ dstat = INB(np, nc_dstat);
+#if 1 /* Band aiding for broken hardwares that fail PCI parity */
+ if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
+ printf ("%s: PCI DATA PARITY ERROR DETECTED - "
+ "DISABLING MASTER DATA PARITY CHECKING.\n",
+ sym_name(np));
+ np->rv_ctest4 &= ~MPEE;
+ goto restart_test;
+ }
+#endif
+ if (dstat & (MDPE|BF|IID)) {
+ printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
+ return (0x80);
+ }
+ /*
+ * Save termination position.
+ */
+ pc = INL(np, nc_dsp);
+ /*
+ * Read memory and register.
+ */
+ host_rd = scr_to_cpu(np->scratch);
+ sym_rd = INL(np, nc_scratcha);
+ sym_bk = INL(np, nc_temp);
+ /*
+ * Check termination position.
+ */
+ if (pc != SCRIPTZ_BA(np, snoopend)+8) {
+ printf ("CACHE TEST FAILED: script execution failed.\n");
+ printf ("start=%08lx, pc=%08lx, end=%08lx\n",
+ (u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc,
+ (u_long) SCRIPTZ_BA(np, snoopend) +8);
+ return (0x40);
+ }
+ /*
+ * Show results.
+ */
+ if (host_wr != sym_rd) {
+ printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
+ (int) host_wr, (int) sym_rd);
+ err |= 1;
+ }
+ if (host_rd != sym_wr) {
+ printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
+ (int) sym_wr, (int) host_rd);
+ err |= 2;
+ }
+ if (sym_bk != sym_wr) {
+ printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
+ (int) sym_wr, (int) sym_bk);
+ err |= 4;
+ }
+
+ return (err);
+}
+
+/*
+ * log message for real hard errors
+ *
+ * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
+ * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
+ *
+ * exception register:
+ * ds: dstat
+ * si: sist
+ *
+ * SCSI bus lines:
+ * so: control lines as driven by chip.
+ * si: control lines as seen by chip.
+ * sd: scsi data lines as seen by chip.
+ *
+ * wide/fastmode:
+ * sx: sxfer (see the manual)
+ * s3: scntl3 (see the manual)
+ * s4: scntl4 (see the manual)
+ *
+ * current script command:
+ * dsp: script address (relative to start of script).
+ * dbc: first word of script command.
+ *
+ * First 24 register of the chip:
+ * r0..rf
+ */
+static void sym_log_hard_error(struct sym_hcb *np, u_short sist, u_char dstat)
+{
+ u32 dsp;
+ int script_ofs;
+ int script_size;
+ char *script_name;
+ u_char *script_base;
+ int i;
+
+ dsp = INL(np, nc_dsp);
+
+ if (dsp > np->scripta_ba &&
+ dsp <= np->scripta_ba + np->scripta_sz) {
+ script_ofs = dsp - np->scripta_ba;
+ script_size = np->scripta_sz;
+ script_base = (u_char *) np->scripta0;
+ script_name = "scripta";
+ }
+ else if (np->scriptb_ba < dsp &&
+ dsp <= np->scriptb_ba + np->scriptb_sz) {
+ script_ofs = dsp - np->scriptb_ba;
+ script_size = np->scriptb_sz;
+ script_base = (u_char *) np->scriptb0;
+ script_name = "scriptb";
+ } else {
+ script_ofs = dsp;
+ script_size = 0;
+ script_base = NULL;
+ script_name = "mem";
+ }
+
+ printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
+ sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist,
+ (unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl),
+ (unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer),
+ (unsigned)INB(np, nc_scntl3),
+ (np->features & FE_C10) ? (unsigned)INB(np, nc_scntl4) : 0,
+ script_name, script_ofs, (unsigned)INL(np, nc_dbc));
+
+ if (((script_ofs & 3) == 0) &&
+ (unsigned)script_ofs < script_size) {
+ printf ("%s: script cmd = %08x\n", sym_name(np),
+ scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
+ }
+
+ printf ("%s: regdump:", sym_name(np));
+ for (i=0; i<24;i++)
+ printf (" %02x", (unsigned)INB_OFF(np, i));
+ printf (".\n");
+
+ /*
+ * PCI BUS error.
+ */
+ if (dstat & (MDPE|BF))
+ sym_log_bus_error(np);
+}
+
+static struct sym_chip sym_dev_table[] = {
+ {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64,
+ FE_ERL}
+ ,
+#ifdef SYM_DEBUG_GENERIC_SUPPORT
+ {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1,
+ FE_BOF}
+ ,
+#else
+ {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1,
+ FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
+ ,
+#endif
+ {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4, 8, 4, 64,
+ FE_BOF|FE_ERL}
+ ,
+ {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6, 8, 4, 64,
+ FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
+ ,
+ {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6, 8, 4, 2,
+ FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
+ ,
+ {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4, 8, 5, 1,
+ FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
+ ,
+ {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2,
+ FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_DIFF|FE_VARCLK}
+ ,
+ {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2,
+ FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_DIFF|FE_VARCLK}
+ ,
+ {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2,
+ FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_DIFF|FE_VARCLK}
+ ,
+ {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2,
+ FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_DIFF|FE_VARCLK}
+ ,
+#ifdef SYM_DEBUG_GENERIC_SUPPORT
+ {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
+ FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
+ FE_RAM|FE_LCKFRQ}
+ ,
+#else
+ {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
+ FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_LCKFRQ}
+ ,
+#endif
+ {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4,
+ FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
+ ,
+ {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4,
+ FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
+ ,
+ {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4,
+ FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
+ ,
+ {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8,
+ FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
+ FE_C10}
+ ,
+ {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8,
+ FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
+ FE_C10|FE_U3EN}
+ ,
+ {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8,
+ FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
+ FE_C10|FE_U3EN}
+ ,
+ {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4,
+ FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_IO256|FE_LEDC}
+};
+
+#define sym_num_devs \
+ (sizeof(sym_dev_table) / sizeof(sym_dev_table[0]))
+
+/*
+ * Look up the chip table.
+ *
+ * Return a pointer to the chip entry if found,
+ * zero otherwise.
+ */
+struct sym_chip *
+sym_lookup_chip_table (u_short device_id, u_char revision)
+{
+ struct sym_chip *chip;
+ int i;
+
+ for (i = 0; i < sym_num_devs; i++) {
+ chip = &sym_dev_table[i];
+ if (device_id != chip->device_id)
+ continue;
+ if (revision > chip->revision_id)
+ continue;
+ return chip;
+ }
+
+ return NULL;
+}
+
+#if SYM_CONF_DMA_ADDRESSING_MODE == 2
+/*
+ * Lookup the 64 bit DMA segments map.
+ * This is only used if the direct mapping
+ * has been unsuccessful.
+ */
+int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s)
+{
+ int i;
+
+ if (!np->use_dac)
+ goto weird;
+
+ /* Look up existing mappings */
+ for (i = SYM_DMAP_SIZE-1; i > 0; i--) {
+ if (h == np->dmap_bah[i])
+ return i;
+ }
+ /* If direct mapping is free, get it */
+ if (!np->dmap_bah[s])
+ goto new;
+ /* Collision -> lookup free mappings */
+ for (s = SYM_DMAP_SIZE-1; s > 0; s--) {
+ if (!np->dmap_bah[s])
+ goto new;
+ }
+weird:
+ panic("sym: ran out of 64 bit DMA segment registers");
+ return -1;
+new:
+ np->dmap_bah[s] = h;
+ np->dmap_dirty = 1;
+ return s;
+}
+
+/*
+ * Update IO registers scratch C..R so they will be
+ * in sync. with queued CCB expectations.
+ */
+static void sym_update_dmap_regs(struct sym_hcb *np)
+{
+ int o, i;
+
+ if (!np->dmap_dirty)
+ return;
+ o = offsetof(struct sym_reg, nc_scrx[0]);
+ for (i = 0; i < SYM_DMAP_SIZE; i++) {
+ OUTL_OFF(np, o, np->dmap_bah[i]);
+ o += 4;
+ }
+ np->dmap_dirty = 0;
+}
+#endif
+
+/* Enforce all the fiddly SPI rules and the chip limitations */
+static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget,
+ struct sym_trans *goal)
+{
+ if (!spi_support_wide(starget))
+ goal->width = 0;
+
+ if (!spi_support_sync(starget)) {
+ goal->iu = 0;
+ goal->dt = 0;
+ goal->qas = 0;
+ goal->period = 0;
+ goal->offset = 0;
+ return;
+ }
+
+ if (spi_support_dt(starget)) {
+ if (spi_support_dt_only(starget))
+ goal->dt = 1;
+
+ if (goal->offset == 0)
+ goal->dt = 0;
+ } else {
+ goal->dt = 0;
+ }
+
+ /* Some targets fail to properly negotiate DT in SE mode */
+ if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN))
+ goal->dt = 0;
+
+ if (goal->dt) {
+ /* all DT transfers must be wide */
+ goal->width = 1;
+ if (goal->offset > np->maxoffs_dt)
+ goal->offset = np->maxoffs_dt;
+ if (goal->period < np->minsync_dt)
+ goal->period = np->minsync_dt;
+ if (goal->period > np->maxsync_dt)
+ goal->period = np->maxsync_dt;
+ } else {
+ goal->iu = goal->qas = 0;
+ if (goal->offset > np->maxoffs)
+ goal->offset = np->maxoffs;
+ if (goal->period < np->minsync)
+ goal->period = np->minsync;
+ if (goal->period > np->maxsync)
+ goal->period = np->maxsync;
+ }
+}
+
+/*
+ * Prepare the next negotiation message if needed.
+ *
+ * Fill in the part of message buffer that contains the
+ * negotiation and the nego_status field of the CCB.
+ * Returns the size of the message in bytes.
+ */
+static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr)
+{
+ struct sym_tcb *tp = &np->target[cp->target];
+ struct scsi_target *starget = tp->sdev->sdev_target;
+ struct sym_trans *goal = &tp->tgoal;
+ int msglen = 0;
+ int nego;
+
+ sym_check_goals(np, starget, goal);
+
+ /*
+ * Many devices implement PPR in a buggy way, so only use it if we
+ * really want to.
+ */
+ if (goal->iu || goal->dt || goal->qas || (goal->period < 0xa)) {
+ nego = NS_PPR;
+ } else if (spi_width(starget) != goal->width) {
+ nego = NS_WIDE;
+ } else if (spi_period(starget) != goal->period ||
+ spi_offset(starget) != goal->offset) {
+ nego = NS_SYNC;
+ } else {
+ goal->check_nego = 0;
+ nego = 0;
+ }
+
+ switch (nego) {
+ case NS_SYNC:
+ msgptr[msglen++] = M_EXTENDED;
+ msgptr[msglen++] = 3;
+ msgptr[msglen++] = M_X_SYNC_REQ;
+ msgptr[msglen++] = goal->period;
+ msgptr[msglen++] = goal->offset;
+ break;
+ case NS_WIDE:
+ msgptr[msglen++] = M_EXTENDED;
+ msgptr[msglen++] = 2;
+ msgptr[msglen++] = M_X_WIDE_REQ;
+ msgptr[msglen++] = goal->width;
+ break;
+ case NS_PPR:
+ msgptr[msglen++] = M_EXTENDED;
+ msgptr[msglen++] = 6;
+ msgptr[msglen++] = M_X_PPR_REQ;
+ msgptr[msglen++] = goal->period;
+ msgptr[msglen++] = 0;
+ msgptr[msglen++] = goal->offset;
+ msgptr[msglen++] = goal->width;
+ msgptr[msglen++] = (goal->iu ? PPR_OPT_IU : 0) |
+ (goal->dt ? PPR_OPT_DT : 0) |
+ (goal->qas ? PPR_OPT_QAS : 0);
+ break;
+ }
+
+ cp->nego_status = nego;
+
+ if (nego) {
+ tp->nego_cp = cp; /* Keep track a nego will be performed */
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ sym_print_nego_msg(np, cp->target,
+ nego == NS_SYNC ? "sync msgout" :
+ nego == NS_WIDE ? "wide msgout" :
+ "ppr msgout", msgptr);
+ }
+ }
+
+ return msglen;
+}
+
+/*
+ * Insert a job into the start queue.
+ */
+void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp)
+{
+ u_short qidx;
+
+#ifdef SYM_CONF_IARB_SUPPORT
+ /*
+ * If the previously queued CCB is not yet done,
+ * set the IARB hint. The SCRIPTS will go with IARB
+ * for this job when starting the previous one.
+ * We leave devices a chance to win arbitration by
+ * not using more than 'iarb_max' consecutive
+ * immediate arbitrations.
+ */
+ if (np->last_cp && np->iarb_count < np->iarb_max) {
+ np->last_cp->host_flags |= HF_HINT_IARB;
+ ++np->iarb_count;
+ }
+ else
+ np->iarb_count = 0;
+ np->last_cp = cp;
+#endif
+
+#if SYM_CONF_DMA_ADDRESSING_MODE == 2
+ /*
+ * Make SCRIPTS aware of the 64 bit DMA
+ * segment registers not being up-to-date.
+ */
+ if (np->dmap_dirty)
+ cp->host_xflags |= HX_DMAP_DIRTY;
+#endif
+
+ /*
+ * Insert first the idle task and then our job.
+ * The MBs should ensure proper ordering.
+ */
+ qidx = np->squeueput + 2;
+ if (qidx >= MAX_QUEUE*2) qidx = 0;
+
+ np->squeue [qidx] = cpu_to_scr(np->idletask_ba);
+ MEMORY_WRITE_BARRIER();
+ np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
+
+ np->squeueput = qidx;
+
+ if (DEBUG_FLAGS & DEBUG_QUEUE)
+ printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
+
+ /*
+ * Script processor may be waiting for reselect.
+ * Wake it up.
+ */
+ MEMORY_WRITE_BARRIER();
+ OUTB(np, nc_istat, SIGP|np->istat_sem);
+}
+
+#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
+/*
+ * Start next ready-to-start CCBs.
+ */
+void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn)
+{
+ SYM_QUEHEAD *qp;
+ struct sym_ccb *cp;
+
+ /*
+ * Paranoia, as usual. :-)
+ */
+ assert(!lp->started_tags || !lp->started_no_tag);
+
+ /*
+ * Try to start as many commands as asked by caller.
+ * Prevent from having both tagged and untagged
+ * commands queued to the device at the same time.
+ */
+ while (maxn--) {
+ qp = sym_remque_head(&lp->waiting_ccbq);
+ if (!qp)
+ break;
+ cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq);
+ if (cp->tag != NO_TAG) {
+ if (lp->started_no_tag ||
+ lp->started_tags >= lp->started_max) {
+ sym_insque_head(qp, &lp->waiting_ccbq);
+ break;
+ }
+ lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba);
+ lp->head.resel_sa =
+ cpu_to_scr(SCRIPTA_BA(np, resel_tag));
+ ++lp->started_tags;
+ } else {
+ if (lp->started_no_tag || lp->started_tags) {
+ sym_insque_head(qp, &lp->waiting_ccbq);
+ break;
+ }
+ lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
+ lp->head.resel_sa =
+ cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
+ ++lp->started_no_tag;
+ }
+ cp->started = 1;
+ sym_insque_tail(qp, &lp->started_ccbq);
+ sym_put_start_queue(np, cp);
+ }
+}
+#endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
+
+/*
+ * The chip may have completed jobs. Look at the DONE QUEUE.
+ *
+ * On paper, memory read barriers may be needed here to
+ * prevent out of order LOADs by the CPU from having
+ * prefetched stale data prior to DMA having occurred.
+ */
+static int sym_wakeup_done (struct sym_hcb *np)
+{
+ struct sym_ccb *cp;
+ int i, n;
+ u32 dsa;
+
+ n = 0;
+ i = np->dqueueget;
+
+ /* MEMORY_READ_BARRIER(); */
+ while (1) {
+ dsa = scr_to_cpu(np->dqueue[i]);
+ if (!dsa)
+ break;
+ np->dqueue[i] = 0;
+ if ((i = i+2) >= MAX_QUEUE*2)
+ i = 0;
+
+ cp = sym_ccb_from_dsa(np, dsa);
+ if (cp) {
+ MEMORY_READ_BARRIER();
+ sym_complete_ok (np, cp);
+ ++n;
+ }
+ else
+ printf ("%s: bad DSA (%x) in done queue.\n",
+ sym_name(np), (u_int) dsa);
+ }
+ np->dqueueget = i;
+
+ return n;
+}
+
+/*
+ * Complete all CCBs queued to the COMP queue.
+ *
+ * These CCBs are assumed:
+ * - Not to be referenced either by devices or
+ * SCRIPTS-related queues and datas.
+ * - To have to be completed with an error condition
+ * or requeued.
+ *
+ * The device queue freeze count is incremented
+ * for each CCB that does not prevent this.
+ * This function is called when all CCBs involved
+ * in error handling/recovery have been reaped.
+ */
+static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status)
+{
+ SYM_QUEHEAD *qp;
+ struct sym_ccb *cp;
+
+ while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) {
+ struct scsi_cmnd *cmd;
+ cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
+ sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
+ /* Leave quiet CCBs waiting for resources */
+ if (cp->host_status == HS_WAIT)
+ continue;
+ cmd = cp->cmd;
+ if (cam_status)
+ sym_set_cam_status(cmd, cam_status);
+#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ if (sym_get_cam_status(cmd) == CAM_REQUEUE_REQ) {
+ struct sym_tcb *tp = &np->target[cp->target];
+ struct sym_lcb *lp = sym_lp(tp, cp->lun);
+ if (lp) {
+ sym_remque(&cp->link2_ccbq);
+ sym_insque_tail(&cp->link2_ccbq,
+ &lp->waiting_ccbq);
+ if (cp->started) {
+ if (cp->tag != NO_TAG)
+ --lp->started_tags;
+ else
+ --lp->started_no_tag;
+ }
+ }
+ cp->started = 0;
+ continue;
+ }
+#endif
+ sym_free_ccb(np, cp);
+ sym_xpt_done(np, cmd);
+ }
+}
+
+/*
+ * Complete all active CCBs with error.
+ * Used on CHIP/SCSI RESET.
+ */
+static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status)
+{
+ /*
+ * Move all active CCBs to the COMP queue
+ * and flush this queue.
+ */
+ sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
+ sym_que_init(&np->busy_ccbq);
+ sym_flush_comp_queue(np, cam_status);
+}
+
+/*
+ * Start chip.
+ *
+ * 'reason' means:
+ * 0: initialisation.
+ * 1: SCSI BUS RESET delivered or received.
+ * 2: SCSI BUS MODE changed.
+ */
+void sym_start_up (struct sym_hcb *np, int reason)
+{
+ int i;
+ u32 phys;
+
+ /*
+ * Reset chip if asked, otherwise just clear fifos.
+ */
+ if (reason == 1)
+ sym_soft_reset(np);
+ else {
+ OUTB(np, nc_stest3, TE|CSF);
+ OUTONB(np, nc_ctest3, CLF);
+ }
+
+ /*
+ * Clear Start Queue
+ */
+ phys = np->squeue_ba;
+ for (i = 0; i < MAX_QUEUE*2; i += 2) {
+ np->squeue[i] = cpu_to_scr(np->idletask_ba);
+ np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
+ }
+ np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
+
+ /*
+ * Start at first entry.
+ */
+ np->squeueput = 0;
+
+ /*
+ * Clear Done Queue
+ */
+ phys = np->dqueue_ba;
+ for (i = 0; i < MAX_QUEUE*2; i += 2) {
+ np->dqueue[i] = 0;
+ np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
+ }
+ np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
+
+ /*
+ * Start at first entry.
+ */
+ np->dqueueget = 0;
+
+ /*
+ * Install patches in scripts.
+ * This also let point to first position the start
+ * and done queue pointers used from SCRIPTS.
+ */
+ np->fw_patch(np);
+
+ /*
+ * Wakeup all pending jobs.
+ */
+ sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
+
+ /*
+ * Init chip.
+ */
+ OUTB(np, nc_istat, 0x00); /* Remove Reset, abort */
+ udelay(2000); /* The 895 needs time for the bus mode to settle */
+
+ OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0);
+ /* full arb., ena parity, par->ATN */
+ OUTB(np, nc_scntl1, 0x00); /* odd parity, and remove CRST!! */
+
+ sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */
+
+ OUTB(np, nc_scid , RRE|np->myaddr); /* Adapter SCSI address */
+ OUTW(np, nc_respid, 1ul<<np->myaddr); /* Id to respond to */
+ OUTB(np, nc_istat , SIGP ); /* Signal Process */
+ OUTB(np, nc_dmode , np->rv_dmode); /* Burst length, dma mode */
+ OUTB(np, nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */
+
+ OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */
+ OUTB(np, nc_ctest3, np->rv_ctest3); /* Write and invalidate */
+ OUTB(np, nc_ctest4, np->rv_ctest4); /* Master parity checking */
+
+ /* Extended Sreq/Sack filtering not supported on the C10 */
+ if (np->features & FE_C10)
+ OUTB(np, nc_stest2, np->rv_stest2);
+ else
+ OUTB(np, nc_stest2, EXT|np->rv_stest2);
+
+ OUTB(np, nc_stest3, TE); /* TolerANT enable */
+ OUTB(np, nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */
+
+ /*
+ * For now, disable AIP generation on C1010-66.
+ */
+ if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_66)
+ OUTB(np, nc_aipcntl1, DISAIP);
+
+ /*
+ * C10101 rev. 0 errata.
+ * Errant SGE's when in narrow. Write bits 4 & 5 of
+ * STEST1 register to disable SGE. We probably should do
+ * that from SCRIPTS for each selection/reselection, but
+ * I just don't want. :)
+ */
+ if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 &&
+ np->revision_id < 1)
+ OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30);
+
+ /*
+ * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
+ * Disable overlapped arbitration for some dual function devices,
+ * regardless revision id (kind of post-chip-design feature. ;-))
+ */
+ if (np->device_id == PCI_DEVICE_ID_NCR_53C875)
+ OUTB(np, nc_ctest0, (1<<5));
+ else if (np->device_id == PCI_DEVICE_ID_NCR_53C896)
+ np->rv_ccntl0 |= DPR;
+
+ /*
+ * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
+ * and/or hardware phase mismatch, since only such chips
+ * seem to support those IO registers.
+ */
+ if (np->features & (FE_DAC|FE_NOPM)) {
+ OUTB(np, nc_ccntl0, np->rv_ccntl0);
+ OUTB(np, nc_ccntl1, np->rv_ccntl1);
+ }
+
+#if SYM_CONF_DMA_ADDRESSING_MODE == 2
+ /*
+ * Set up scratch C and DRS IO registers to map the 32 bit
+ * DMA address range our data structures are located in.
+ */
+ if (np->use_dac) {
+ np->dmap_bah[0] = 0; /* ??? */
+ OUTL(np, nc_scrx[0], np->dmap_bah[0]);
+ OUTL(np, nc_drs, np->dmap_bah[0]);
+ }
+#endif
+
+ /*
+ * If phase mismatch handled by scripts (895A/896/1010),
+ * set PM jump addresses.
+ */
+ if (np->features & FE_NOPM) {
+ OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle));
+ OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle));
+ }
+
+ /*
+ * Enable GPIO0 pin for writing if LED support from SCRIPTS.
+ * Also set GPIO5 and clear GPIO6 if hardware LED control.
+ */
+ if (np->features & FE_LED0)
+ OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01);
+ else if (np->features & FE_LEDC)
+ OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20);
+
+ /*
+ * enable ints
+ */
+ OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
+ OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID);
+
+ /*
+ * For 895/6 enable SBMC interrupt and save current SCSI bus mode.
+ * Try to eat the spurious SBMC interrupt that may occur when
+ * we reset the chip but not the SCSI BUS (at initialization).
+ */
+ if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
+ OUTONW(np, nc_sien, SBMC);
+ if (reason == 0) {
+ mdelay(100);
+ INW(np, nc_sist);
+ }
+ np->scsi_mode = INB(np, nc_stest4) & SMODE;
+ }
+
+ /*
+ * Fill in target structure.
+ * Reinitialize usrsync.
+ * Reinitialize usrwide.
+ * Prepare sync negotiation according to actual SCSI bus mode.
+ */
+ for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
+ struct sym_tcb *tp = &np->target[i];
+
+ tp->to_reset = 0;
+ tp->head.sval = 0;
+ tp->head.wval = np->rv_scntl3;
+ tp->head.uval = 0;
+ }
+
+ /*
+ * Download SCSI SCRIPTS to on-chip RAM if present,
+ * and start script processor.
+ * We do the download preferently from the CPU.
+ * For platforms that may not support PCI memory mapping,
+ * we use simple SCRIPTS that performs MEMORY MOVEs.
+ */
+ phys = SCRIPTA_BA(np, init);
+ if (np->ram_ba) {
+ if (sym_verbose >= 2)
+ printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np));
+ memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz);
+ if (np->ram_ws == 8192) {
+ memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz);
+ phys = scr_to_cpu(np->scr_ram_seg);
+ OUTL(np, nc_mmws, phys);
+ OUTL(np, nc_mmrs, phys);
+ OUTL(np, nc_sfs, phys);
+ phys = SCRIPTB_BA(np, start64);
+ }
+ }
+
+ np->istat_sem = 0;
+
+ OUTL(np, nc_dsa, np->hcb_ba);
+ OUTL_DSP(np, phys);
+
+ /*
+ * Notify the XPT about the RESET condition.
+ */
+ if (reason != 0)
+ sym_xpt_async_bus_reset(np);
+}
+
+/*
+ * Switch trans mode for current job and its target.
+ */
+static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs,
+ u_char per, u_char wide, u_char div, u_char fak)
+{
+ SYM_QUEHEAD *qp;
+ u_char sval, wval, uval;
+ struct sym_tcb *tp = &np->target[target];
+
+ assert(target == (INB(np, nc_sdid) & 0x0f));
+
+ sval = tp->head.sval;
+ wval = tp->head.wval;
+ uval = tp->head.uval;
+
+#if 0
+ printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
+ sval, wval, uval, np->rv_scntl3);
+#endif
+ /*
+ * Set the offset.
+ */
+ if (!(np->features & FE_C10))
+ sval = (sval & ~0x1f) | ofs;
+ else
+ sval = (sval & ~0x3f) | ofs;
+
+ /*
+ * Set the sync divisor and extra clock factor.
+ */
+ if (ofs != 0) {
+ wval = (wval & ~0x70) | ((div+1) << 4);
+ if (!(np->features & FE_C10))
+ sval = (sval & ~0xe0) | (fak << 5);
+ else {
+ uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
+ if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
+ if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
+ }
+ }
+
+ /*
+ * Set the bus width.
+ */
+ wval = wval & ~EWS;
+ if (wide != 0)
+ wval |= EWS;
+
+ /*
+ * Set misc. ultra enable bits.
+ */
+ if (np->features & FE_C10) {
+ uval = uval & ~(U3EN|AIPCKEN);
+ if (opts) {
+ assert(np->features & FE_U3EN);
+ uval |= U3EN;
+ }
+ } else {
+ wval = wval & ~ULTRA;
+ if (per <= 12) wval |= ULTRA;
+ }
+
+ /*
+ * Stop there if sync parameters are unchanged.
+ */
+ if (tp->head.sval == sval &&
+ tp->head.wval == wval &&
+ tp->head.uval == uval)
+ return;
+ tp->head.sval = sval;
+ tp->head.wval = wval;
+ tp->head.uval = uval;
+
+ /*
+ * Disable extended Sreq/Sack filtering if per < 50.
+ * Not supported on the C1010.
+ */
+ if (per < 50 && !(np->features & FE_C10))
+ OUTOFFB(np, nc_stest2, EXT);
+
+ /*
+ * set actual value and sync_status
+ */
+ OUTB(np, nc_sxfer, tp->head.sval);
+ OUTB(np, nc_scntl3, tp->head.wval);
+
+ if (np->features & FE_C10) {
+ OUTB(np, nc_scntl4, tp->head.uval);
+ }
+
+ /*
+ * patch ALL busy ccbs of this target.
+ */
+ FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
+ struct sym_ccb *cp;
+ cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
+ if (cp->target != target)
+ continue;
+ cp->phys.select.sel_scntl3 = tp->head.wval;
+ cp->phys.select.sel_sxfer = tp->head.sval;
+ if (np->features & FE_C10) {
+ cp->phys.select.sel_scntl4 = tp->head.uval;
+ }
+ }
+}
+
+/*
+ * We received a WDTR.
+ * Let everything be aware of the changes.
+ */
+static void sym_setwide(struct sym_hcb *np, int target, u_char wide)
+{
+ struct sym_tcb *tp = &np->target[target];
+ struct scsi_target *starget = tp->sdev->sdev_target;
+
+ if (spi_width(starget) == wide)
+ return;
+
+ sym_settrans(np, target, 0, 0, 0, wide, 0, 0);
+
+ tp->tgoal.width = wide;
+ spi_offset(starget) = 0;
+ spi_period(starget) = 0;
+ spi_width(starget) = wide;
+ spi_iu(starget) = 0;
+ spi_dt(starget) = 0;
+ spi_qas(starget) = 0;
+
+ if (sym_verbose >= 3)
+ spi_display_xfer_agreement(starget);
+}
+
+/*
+ * We received a SDTR.
+ * Let everything be aware of the changes.
+ */
+static void
+sym_setsync(struct sym_hcb *np, int target,
+ u_char ofs, u_char per, u_char div, u_char fak)
+{
+ struct sym_tcb *tp = &np->target[target];
+ struct scsi_target *starget = tp->sdev->sdev_target;
+ u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT;
+
+ sym_settrans(np, target, 0, ofs, per, wide, div, fak);
+
+ spi_period(starget) = per;
+ spi_offset(starget) = ofs;
+ spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0;
+
+ if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) {
+ tp->tgoal.period = per;
+ tp->tgoal.offset = ofs;
+ tp->tgoal.check_nego = 0;
+ }
+
+ spi_display_xfer_agreement(starget);
+}
+
+/*
+ * We received a PPR.
+ * Let everything be aware of the changes.
+ */
+static void
+sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs,
+ u_char per, u_char wide, u_char div, u_char fak)
+{
+ struct sym_tcb *tp = &np->target[target];
+ struct scsi_target *starget = tp->sdev->sdev_target;
+
+ sym_settrans(np, target, opts, ofs, per, wide, div, fak);
+
+ spi_width(starget) = tp->tgoal.width = wide;
+ spi_period(starget) = tp->tgoal.period = per;
+ spi_offset(starget) = tp->tgoal.offset = ofs;
+ spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU);
+ spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT);
+ spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS);
+ tp->tgoal.check_nego = 0;
+
+ spi_display_xfer_agreement(starget);
+}
+
+/*
+ * generic recovery from scsi interrupt
+ *
+ * The doc says that when the chip gets an SCSI interrupt,
+ * it tries to stop in an orderly fashion, by completing
+ * an instruction fetch that had started or by flushing
+ * the DMA fifo for a write to memory that was executing.
+ * Such a fashion is not enough to know if the instruction
+ * that was just before the current DSP value has been
+ * executed or not.
+ *
+ * There are some small SCRIPTS sections that deal with
+ * the start queue and the done queue that may break any
+ * assomption from the C code if we are interrupted
+ * inside, so we reset if this happens. Btw, since these
+ * SCRIPTS sections are executed while the SCRIPTS hasn't
+ * started SCSI operations, it is very unlikely to happen.
+ *
+ * All the driver data structures are supposed to be
+ * allocated from the same 4 GB memory window, so there
+ * is a 1 to 1 relationship between DSA and driver data
+ * structures. Since we are careful :) to invalidate the
+ * DSA when we complete a command or when the SCRIPTS
+ * pushes a DSA into a queue, we can trust it when it
+ * points to a CCB.
+ */
+static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts)
+{
+ u32 dsp = INL(np, nc_dsp);
+ u32 dsa = INL(np, nc_dsa);
+ struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
+
+ /*
+ * If we haven't been interrupted inside the SCRIPTS
+ * critical pathes, we can safely restart the SCRIPTS
+ * and trust the DSA value if it matches a CCB.
+ */
+ if ((!(dsp > SCRIPTA_BA(np, getjob_begin) &&
+ dsp < SCRIPTA_BA(np, getjob_end) + 1)) &&
+ (!(dsp > SCRIPTA_BA(np, ungetjob) &&
+ dsp < SCRIPTA_BA(np, reselect) + 1)) &&
+ (!(dsp > SCRIPTB_BA(np, sel_for_abort) &&
+ dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) &&
+ (!(dsp > SCRIPTA_BA(np, done) &&
+ dsp < SCRIPTA_BA(np, done_end) + 1))) {
+ OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
+ OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */
+ /*
+ * If we have a CCB, let the SCRIPTS call us back for
+ * the handling of the error with SCRATCHA filled with
+ * STARTPOS. This way, we will be able to freeze the
+ * device queue and requeue awaiting IOs.
+ */
+ if (cp) {
+ cp->host_status = hsts;
+ OUTL_DSP(np, SCRIPTA_BA(np, complete_error));
+ }
+ /*
+ * Otherwise just restart the SCRIPTS.
+ */
+ else {
+ OUTL(np, nc_dsa, 0xffffff);
+ OUTL_DSP(np, SCRIPTA_BA(np, start));
+ }
+ }
+ else
+ goto reset_all;
+
+ return;
+
+reset_all:
+ sym_start_reset(np);
+}
+
+/*
+ * chip exception handler for selection timeout
+ */
+static void sym_int_sto (struct sym_hcb *np)
+{
+ u32 dsp = INL(np, nc_dsp);
+
+ if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
+
+ if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8)
+ sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
+ else
+ sym_start_reset(np);
+}
+
+/*
+ * chip exception handler for unexpected disconnect
+ */
+static void sym_int_udc (struct sym_hcb *np)
+{
+ printf ("%s: unexpected disconnect\n", sym_name(np));
+ sym_recover_scsi_int(np, HS_UNEXPECTED);
+}
+
+/*
+ * chip exception handler for SCSI bus mode change
+ *
+ * spi2-r12 11.2.3 says a transceiver mode change must
+ * generate a reset event and a device that detects a reset
+ * event shall initiate a hard reset. It says also that a
+ * device that detects a mode change shall set data transfer
+ * mode to eight bit asynchronous, etc...
+ * So, just reinitializing all except chip should be enough.
+ */
+static void sym_int_sbmc (struct sym_hcb *np)
+{
+ u_char scsi_mode = INB(np, nc_stest4) & SMODE;
+
+ /*
+ * Notify user.
+ */
+ printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np),
+ sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
+
+ /*
+ * Should suspend command processing for a few seconds and
+ * reinitialize all except the chip.
+ */
+ sym_start_up (np, 2);
+}
+
+/*
+ * chip exception handler for SCSI parity error.
+ *
+ * When the chip detects a SCSI parity error and is
+ * currently executing a (CH)MOV instruction, it does
+ * not interrupt immediately, but tries to finish the
+ * transfer of the current scatter entry before
+ * interrupting. The following situations may occur:
+ *
+ * - The complete scatter entry has been transferred
+ * without the device having changed phase.
+ * The chip will then interrupt with the DSP pointing
+ * to the instruction that follows the MOV.
+ *
+ * - A phase mismatch occurs before the MOV finished
+ * and phase errors are to be handled by the C code.
+ * The chip will then interrupt with both PAR and MA
+ * conditions set.
+ *
+ * - A phase mismatch occurs before the MOV finished and
+ * phase errors are to be handled by SCRIPTS.
+ * The chip will load the DSP with the phase mismatch
+ * JUMP address and interrupt the host processor.
+ */
+static void sym_int_par (struct sym_hcb *np, u_short sist)
+{
+ u_char hsts = INB(np, HS_PRT);
+ u32 dsp = INL(np, nc_dsp);
+ u32 dbc = INL(np, nc_dbc);
+ u32 dsa = INL(np, nc_dsa);
+ u_char sbcl = INB(np, nc_sbcl);
+ u_char cmd = dbc >> 24;
+ int phase = cmd & 7;
+ struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
+
+ printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
+ sym_name(np), hsts, dbc, sbcl);
+
+ /*
+ * Check that the chip is connected to the SCSI BUS.
+ */
+ if (!(INB(np, nc_scntl1) & ISCON)) {
+ sym_recover_scsi_int(np, HS_UNEXPECTED);
+ return;
+ }
+
+ /*
+ * If the nexus is not clearly identified, reset the bus.
+ * We will try to do better later.
+ */
+ if (!cp)
+ goto reset_all;
+
+ /*
+ * Check instruction was a MOV, direction was INPUT and
+ * ATN is asserted.
+ */
+ if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
+ goto reset_all;
+
+ /*
+ * Keep track of the parity error.
+ */
+ OUTONB(np, HF_PRT, HF_EXT_ERR);
+ cp->xerr_status |= XE_PARITY_ERR;
+
+ /*
+ * Prepare the message to send to the device.
+ */
+ np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
+
+ /*
+ * If the old phase was DATA IN phase, we have to deal with
+ * the 3 situations described above.
+ * For other input phases (MSG IN and STATUS), the device
+ * must resend the whole thing that failed parity checking
+ * or signal error. So, jumping to dispatcher should be OK.
+ */
+ if (phase == 1 || phase == 5) {
+ /* Phase mismatch handled by SCRIPTS */
+ if (dsp == SCRIPTB_BA(np, pm_handle))
+ OUTL_DSP(np, dsp);
+ /* Phase mismatch handled by the C code */
+ else if (sist & MA)
+ sym_int_ma (np);
+ /* No phase mismatch occurred */
+ else {
+ sym_set_script_dp (np, cp, dsp);
+ OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
+ }
+ }
+ else if (phase == 7) /* We definitely cannot handle parity errors */
+#if 1 /* in message-in phase due to the relection */
+ goto reset_all; /* path and various message anticipations. */
+#else
+ OUTL_DSP(np, SCRIPTA_BA(np, clrack));
+#endif
+ else
+ OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
+ return;
+
+reset_all:
+ sym_start_reset(np);
+ return;
+}
+
+/*
+ * chip exception handler for phase errors.
+ *
+ * We have to construct a new transfer descriptor,
+ * to transfer the rest of the current block.
+ */
+static void sym_int_ma (struct sym_hcb *np)
+{
+ u32 dbc;
+ u32 rest;
+ u32 dsp;
+ u32 dsa;
+ u32 nxtdsp;
+ u32 *vdsp;
+ u32 oadr, olen;
+ u32 *tblp;
+ u32 newcmd;
+ u_int delta;
+ u_char cmd;
+ u_char hflags, hflags0;
+ struct sym_pmc *pm;
+ struct sym_ccb *cp;
+
+ dsp = INL(np, nc_dsp);
+ dbc = INL(np, nc_dbc);
+ dsa = INL(np, nc_dsa);
+
+ cmd = dbc >> 24;
+ rest = dbc & 0xffffff;
+ delta = 0;
+
+ /*
+ * locate matching cp if any.
+ */
+ cp = sym_ccb_from_dsa(np, dsa);
+
+ /*
+ * Donnot take into account dma fifo and various buffers in
+ * INPUT phase since the chip flushes everything before
+ * raising the MA interrupt for interrupted INPUT phases.
+ * For DATA IN phase, we will check for the SWIDE later.
+ */
+ if ((cmd & 7) != 1 && (cmd & 7) != 5) {
+ u_char ss0, ss2;
+
+ if (np->features & FE_DFBC)
+ delta = INW(np, nc_dfbc);
+ else {
+ u32 dfifo;
+
+ /*
+ * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
+ */
+ dfifo = INL(np, nc_dfifo);
+
+ /*
+ * Calculate remaining bytes in DMA fifo.
+ * (CTEST5 = dfifo >> 16)
+ */
+ if (dfifo & (DFS << 16))
+ delta = ((((dfifo >> 8) & 0x300) |
+ (dfifo & 0xff)) - rest) & 0x3ff;
+ else
+ delta = ((dfifo & 0xff) - rest) & 0x7f;
+ }
+
+ /*
+ * The data in the dma fifo has not been transfered to
+ * the target -> add the amount to the rest
+ * and clear the data.
+ * Check the sstat2 register in case of wide transfer.
+ */
+ rest += delta;
+ ss0 = INB(np, nc_sstat0);
+ if (ss0 & OLF) rest++;
+ if (!(np->features & FE_C10))
+ if (ss0 & ORF) rest++;
+ if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
+ ss2 = INB(np, nc_sstat2);
+ if (ss2 & OLF1) rest++;
+ if (!(np->features & FE_C10))
+ if (ss2 & ORF1) rest++;
+ }
+
+ /*
+ * Clear fifos.
+ */
+ OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */
+ OUTB(np, nc_stest3, TE|CSF); /* scsi fifo */
+ }
+
+ /*
+ * log the information
+ */
+ if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
+ printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7,
+ (unsigned) rest, (unsigned) delta);
+
+ /*
+ * try to find the interrupted script command,
+ * and the address at which to continue.
+ */
+ vdsp = NULL;
+ nxtdsp = 0;
+ if (dsp > np->scripta_ba &&
+ dsp <= np->scripta_ba + np->scripta_sz) {
+ vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
+ nxtdsp = dsp;
+ }
+ else if (dsp > np->scriptb_ba &&
+ dsp <= np->scriptb_ba + np->scriptb_sz) {
+ vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
+ nxtdsp = dsp;
+ }
+
+ /*
+ * log the information
+ */
+ if (DEBUG_FLAGS & DEBUG_PHASE) {
+ printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
+ cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
+ }
+
+ if (!vdsp) {
+ printf ("%s: interrupted SCRIPT address not found.\n",
+ sym_name (np));
+ goto reset_all;
+ }
+
+ if (!cp) {
+ printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
+ sym_name (np));
+ goto reset_all;
+ }
+
+ /*
+ * get old startaddress and old length.
+ */
+ oadr = scr_to_cpu(vdsp[1]);
+
+ if (cmd & 0x10) { /* Table indirect */
+ tblp = (u32 *) ((char*) &cp->phys + oadr);
+ olen = scr_to_cpu(tblp[0]);
+ oadr = scr_to_cpu(tblp[1]);
+ } else {
+ tblp = (u32 *) 0;
+ olen = scr_to_cpu(vdsp[0]) & 0xffffff;
+ }
+
+ if (DEBUG_FLAGS & DEBUG_PHASE) {
+ printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
+ (unsigned) (scr_to_cpu(vdsp[0]) >> 24),
+ tblp,
+ (unsigned) olen,
+ (unsigned) oadr);
+ }
+
+ /*
+ * check cmd against assumed interrupted script command.
+ * If dt data phase, the MOVE instruction hasn't bit 4 of
+ * the phase.
+ */
+ if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
+ sym_print_addr(cp->cmd,
+ "internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
+ cmd, scr_to_cpu(vdsp[0]) >> 24);
+
+ goto reset_all;
+ }
+
+ /*
+ * if old phase not dataphase, leave here.
+ */
+ if (cmd & 2) {
+ sym_print_addr(cp->cmd,
+ "phase change %x-%x %d@%08x resid=%d.\n",
+ cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen,
+ (unsigned)oadr, (unsigned)rest);
+ goto unexpected_phase;
+ }
+
+ /*
+ * Choose the correct PM save area.
+ *
+ * Look at the PM_SAVE SCRIPT if you want to understand
+ * this stuff. The equivalent code is implemented in
+ * SCRIPTS for the 895A, 896 and 1010 that are able to
+ * handle PM from the SCRIPTS processor.
+ */
+ hflags0 = INB(np, HF_PRT);
+ hflags = hflags0;
+
+ if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
+ if (hflags & HF_IN_PM0)
+ nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
+ else if (hflags & HF_IN_PM1)
+ nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
+
+ if (hflags & HF_DP_SAVED)
+ hflags ^= HF_ACT_PM;
+ }
+
+ if (!(hflags & HF_ACT_PM)) {
+ pm = &cp->phys.pm0;
+ newcmd = SCRIPTA_BA(np, pm0_data);
+ }
+ else {
+ pm = &cp->phys.pm1;
+ newcmd = SCRIPTA_BA(np, pm1_data);
+ }
+
+ hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
+ if (hflags != hflags0)
+ OUTB(np, HF_PRT, hflags);
+
+ /*
+ * fillin the phase mismatch context
+ */
+ pm->sg.addr = cpu_to_scr(oadr + olen - rest);
+ pm->sg.size = cpu_to_scr(rest);
+ pm->ret = cpu_to_scr(nxtdsp);
+
+ /*
+ * If we have a SWIDE,
+ * - prepare the address to write the SWIDE from SCRIPTS,
+ * - compute the SCRIPTS address to restart from,
+ * - move current data pointer context by one byte.
+ */
+ nxtdsp = SCRIPTA_BA(np, dispatch);
+ if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
+ (INB(np, nc_scntl2) & WSR)) {
+ u32 tmp;
+
+ /*
+ * Set up the table indirect for the MOVE
+ * of the residual byte and adjust the data
+ * pointer context.
+ */
+ tmp = scr_to_cpu(pm->sg.addr);
+ cp->phys.wresid.addr = cpu_to_scr(tmp);
+ pm->sg.addr = cpu_to_scr(tmp + 1);
+ tmp = scr_to_cpu(pm->sg.size);
+ cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
+ pm->sg.size = cpu_to_scr(tmp - 1);
+
+ /*
+ * If only the residual byte is to be moved,
+ * no PM context is needed.
+ */
+ if ((tmp&0xffffff) == 1)
+ newcmd = pm->ret;
+
+ /*
+ * Prepare the address of SCRIPTS that will
+ * move the residual byte to memory.
+ */
+ nxtdsp = SCRIPTB_BA(np, wsr_ma_helper);
+ }
+
+ if (DEBUG_FLAGS & DEBUG_PHASE) {
+ sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n",
+ hflags0, hflags, newcmd,
+ (unsigned)scr_to_cpu(pm->sg.addr),
+ (unsigned)scr_to_cpu(pm->sg.size),
+ (unsigned)scr_to_cpu(pm->ret));
+ }
+
+ /*
+ * Restart the SCRIPTS processor.
+ */
+ sym_set_script_dp (np, cp, newcmd);
+ OUTL_DSP(np, nxtdsp);
+ return;
+
+ /*
+ * Unexpected phase changes that occurs when the current phase
+ * is not a DATA IN or DATA OUT phase are due to error conditions.
+ * Such event may only happen when the SCRIPTS is using a
+ * multibyte SCSI MOVE.
+ *
+ * Phase change Some possible cause
+ *
+ * COMMAND --> MSG IN SCSI parity error detected by target.
+ * COMMAND --> STATUS Bad command or refused by target.
+ * MSG OUT --> MSG IN Message rejected by target.
+ * MSG OUT --> COMMAND Bogus target that discards extended
+ * negotiation messages.
+ *
+ * The code below does not care of the new phase and so
+ * trusts the target. Why to annoy it ?
+ * If the interrupted phase is COMMAND phase, we restart at
+ * dispatcher.
+ * If a target does not get all the messages after selection,
+ * the code assumes blindly that the target discards extended
+ * messages and clears the negotiation status.
+ * If the target does not want all our response to negotiation,
+ * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
+ * bloat for such a should_not_happen situation).
+ * In all other situation, we reset the BUS.
+ * Are these assumptions reasonnable ? (Wait and see ...)
+ */
+unexpected_phase:
+ dsp -= 8;
+ nxtdsp = 0;
+
+ switch (cmd & 7) {
+ case 2: /* COMMAND phase */
+ nxtdsp = SCRIPTA_BA(np, dispatch);
+ break;
+#if 0
+ case 3: /* STATUS phase */
+ nxtdsp = SCRIPTA_BA(np, dispatch);
+ break;
+#endif
+ case 6: /* MSG OUT phase */
+ /*
+ * If the device may want to use untagged when we want
+ * tagged, we prepare an IDENTIFY without disc. granted,
+ * since we will not be able to handle reselect.
+ * Otherwise, we just don't care.
+ */
+ if (dsp == SCRIPTA_BA(np, send_ident)) {
+ if (cp->tag != NO_TAG && olen - rest <= 3) {
+ cp->host_status = HS_BUSY;
+ np->msgout[0] = IDENTIFY(0, cp->lun);
+ nxtdsp = SCRIPTB_BA(np, ident_break_atn);
+ }
+ else
+ nxtdsp = SCRIPTB_BA(np, ident_break);
+ }
+ else if (dsp == SCRIPTB_BA(np, send_wdtr) ||
+ dsp == SCRIPTB_BA(np, send_sdtr) ||
+ dsp == SCRIPTB_BA(np, send_ppr)) {
+ nxtdsp = SCRIPTB_BA(np, nego_bad_phase);
+ if (dsp == SCRIPTB_BA(np, send_ppr)) {
+ struct scsi_device *dev = cp->cmd->device;
+ dev->ppr = 0;
+ }
+ }
+ break;
+#if 0
+ case 7: /* MSG IN phase */
+ nxtdsp = SCRIPTA_BA(np, clrack);
+ break;
+#endif
+ }
+
+ if (nxtdsp) {
+ OUTL_DSP(np, nxtdsp);
+ return;
+ }
+
+reset_all:
+ sym_start_reset(np);
+}
+
+/*
+ * chip interrupt handler
+ *
+ * In normal situations, interrupt conditions occur one at
+ * a time. But when something bad happens on the SCSI BUS,
+ * the chip may raise several interrupt flags before
+ * stopping and interrupting the CPU. The additionnal
+ * interrupt flags are stacked in some extra registers
+ * after the SIP and/or DIP flag has been raised in the
+ * ISTAT. After the CPU has read the interrupt condition
+ * flag from SIST or DSTAT, the chip unstacks the other
+ * interrupt flags and sets the corresponding bits in
+ * SIST or DSTAT. Since the chip starts stacking once the
+ * SIP or DIP flag is set, there is a small window of time
+ * where the stacking does not occur.
+ *
+ * Typically, multiple interrupt conditions may happen in
+ * the following situations:
+ *
+ * - SCSI parity error + Phase mismatch (PAR|MA)
+ * When an parity error is detected in input phase
+ * and the device switches to msg-in phase inside a
+ * block MOV.
+ * - SCSI parity error + Unexpected disconnect (PAR|UDC)
+ * When a stupid device does not want to handle the
+ * recovery of an SCSI parity error.
+ * - Some combinations of STO, PAR, UDC, ...
+ * When using non compliant SCSI stuff, when user is
+ * doing non compliant hot tampering on the BUS, when
+ * something really bad happens to a device, etc ...
+ *
+ * The heuristic suggested by SYMBIOS to handle
+ * multiple interrupts is to try unstacking all
+ * interrupts conditions and to handle them on some
+ * priority based on error severity.
+ * This will work when the unstacking has been
+ * successful, but we cannot be 100 % sure of that,
+ * since the CPU may have been faster to unstack than
+ * the chip is able to stack. Hmmm ... But it seems that
+ * such a situation is very unlikely to happen.
+ *
+ * If this happen, for example STO caught by the CPU
+ * then UDC happenning before the CPU have restarted
+ * the SCRIPTS, the driver may wrongly complete the
+ * same command on UDC, since the SCRIPTS didn't restart
+ * and the DSA still points to the same command.
+ * We avoid this situation by setting the DSA to an
+ * invalid value when the CCB is completed and before
+ * restarting the SCRIPTS.
+ *
+ * Another issue is that we need some section of our
+ * recovery procedures to be somehow uninterruptible but
+ * the SCRIPTS processor does not provides such a
+ * feature. For this reason, we handle recovery preferently
+ * from the C code and check against some SCRIPTS critical
+ * sections from the C code.
+ *
+ * Hopefully, the interrupt handling of the driver is now
+ * able to resist to weird BUS error conditions, but donnot
+ * ask me for any guarantee that it will never fail. :-)
+ * Use at your own decision and risk.
+ */
+
+void sym_interrupt (struct sym_hcb *np)
+{
+ u_char istat, istatc;
+ u_char dstat;
+ u_short sist;
+
+ /*
+ * interrupt on the fly ?
+ * (SCRIPTS may still be running)
+ *
+ * A `dummy read' is needed to ensure that the
+ * clear of the INTF flag reaches the device
+ * and that posted writes are flushed to memory
+ * before the scanning of the DONE queue.
+ * Note that SCRIPTS also (dummy) read to memory
+ * prior to deliver the INTF interrupt condition.
+ */
+ istat = INB(np, nc_istat);
+ if (istat & INTF) {
+ OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem);
+ istat = INB(np, nc_istat); /* DUMMY READ */
+ if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
+ sym_wakeup_done(np);
+ }
+
+ if (!(istat & (SIP|DIP)))
+ return;
+
+#if 0 /* We should never get this one */
+ if (istat & CABRT)
+ OUTB(np, nc_istat, CABRT);
+#endif
+
+ /*
+ * PAR and MA interrupts may occur at the same time,
+ * and we need to know of both in order to handle
+ * this situation properly. We try to unstack SCSI
+ * interrupts for that reason. BTW, I dislike a LOT
+ * such a loop inside the interrupt routine.
+ * Even if DMA interrupt stacking is very unlikely to
+ * happen, we also try unstacking these ones, since
+ * this has no performance impact.
+ */
+ sist = 0;
+ dstat = 0;
+ istatc = istat;
+ do {
+ if (istatc & SIP)
+ sist |= INW(np, nc_sist);
+ if (istatc & DIP)
+ dstat |= INB(np, nc_dstat);
+ istatc = INB(np, nc_istat);
+ istat |= istatc;
+ } while (istatc & (SIP|DIP));
+
+ if (DEBUG_FLAGS & DEBUG_TINY)
+ printf ("<%d|%x:%x|%x:%x>",
+ (int)INB(np, nc_scr0),
+ dstat,sist,
+ (unsigned)INL(np, nc_dsp),
+ (unsigned)INL(np, nc_dbc));
+ /*
+ * On paper, a memory read barrier may be needed here to
+ * prevent out of order LOADs by the CPU from having
+ * prefetched stale data prior to DMA having occurred.
+ * And since we are paranoid ... :)
+ */
+ MEMORY_READ_BARRIER();
+
+ /*
+ * First, interrupts we want to service cleanly.
+ *
+ * Phase mismatch (MA) is the most frequent interrupt
+ * for chip earlier than the 896 and so we have to service
+ * it as quickly as possible.
+ * A SCSI parity error (PAR) may be combined with a phase
+ * mismatch condition (MA).
+ * Programmed interrupts (SIR) are used to call the C code
+ * from SCRIPTS.
+ * The single step interrupt (SSI) is not used in this
+ * driver.
+ */
+ if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
+ !(dstat & (MDPE|BF|ABRT|IID))) {
+ if (sist & PAR) sym_int_par (np, sist);
+ else if (sist & MA) sym_int_ma (np);
+ else if (dstat & SIR) sym_int_sir (np);
+ else if (dstat & SSI) OUTONB_STD();
+ else goto unknown_int;
+ return;
+ }
+
+ /*
+ * Now, interrupts that donnot happen in normal
+ * situations and that we may need to recover from.
+ *
+ * On SCSI RESET (RST), we reset everything.
+ * On SCSI BUS MODE CHANGE (SBMC), we complete all
+ * active CCBs with RESET status, prepare all devices
+ * for negotiating again and restart the SCRIPTS.
+ * On STO and UDC, we complete the CCB with the corres-
+ * ponding status and restart the SCRIPTS.
+ */
+ if (sist & RST) {
+ printf("%s: SCSI BUS reset detected.\n", sym_name(np));
+ sym_start_up (np, 1);
+ return;
+ }
+
+ OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
+ OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */
+
+ if (!(sist & (GEN|HTH|SGE)) &&
+ !(dstat & (MDPE|BF|ABRT|IID))) {
+ if (sist & SBMC) sym_int_sbmc (np);
+ else if (sist & STO) sym_int_sto (np);
+ else if (sist & UDC) sym_int_udc (np);
+ else goto unknown_int;
+ return;
+ }
+
+ /*
+ * Now, interrupts we are not able to recover cleanly.
+ *
+ * Log message for hard errors.
+ * Reset everything.
+ */
+
+ sym_log_hard_error(np, sist, dstat);
+
+ if ((sist & (GEN|HTH|SGE)) ||
+ (dstat & (MDPE|BF|ABRT|IID))) {
+ sym_start_reset(np);
+ return;
+ }
+
+unknown_int:
+ /*
+ * We just miss the cause of the interrupt. :(
+ * Print a message. The timeout will do the real work.
+ */
+ printf( "%s: unknown interrupt(s) ignored, "
+ "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
+ sym_name(np), istat, dstat, sist);
+}
+
+/*
+ * Dequeue from the START queue all CCBs that match
+ * a given target/lun/task condition (-1 means all),
+ * and move them from the BUSY queue to the COMP queue
+ * with CAM_REQUEUE_REQ status condition.
+ * This function is used during error handling/recovery.
+ * It is called with SCRIPTS not running.
+ */
+static int
+sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task)
+{
+ int j;
+ struct sym_ccb *cp;
+
+ /*
+ * Make sure the starting index is within range.
+ */
+ assert((i >= 0) && (i < 2*MAX_QUEUE));
+
+ /*
+ * Walk until end of START queue and dequeue every job
+ * that matches the target/lun/task condition.
+ */
+ j = i;
+ while (i != np->squeueput) {
+ cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
+ assert(cp);
+#ifdef SYM_CONF_IARB_SUPPORT
+ /* Forget hints for IARB, they may be no longer relevant */
+ cp->host_flags &= ~HF_HINT_IARB;
+#endif
+ if ((target == -1 || cp->target == target) &&
+ (lun == -1 || cp->lun == lun) &&
+ (task == -1 || cp->tag == task)) {
+ sym_set_cam_status(cp->cmd, CAM_REQUEUE_REQ);
+ sym_remque(&cp->link_ccbq);
+ sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
+ }
+ else {
+ if (i != j)
+ np->squeue[j] = np->squeue[i];
+ if ((j += 2) >= MAX_QUEUE*2) j = 0;
+ }
+ if ((i += 2) >= MAX_QUEUE*2) i = 0;
+ }
+ if (i != j) /* Copy back the idle task if needed */
+ np->squeue[j] = np->squeue[i];
+ np->squeueput = j; /* Update our current start queue pointer */
+
+ return (i - j) / 2;
+}
+
+/*
+ * chip handler for bad SCSI status condition
+ *
+ * In case of bad SCSI status, we unqueue all the tasks
+ * currently queued to the controller but not yet started
+ * and then restart the SCRIPTS processor immediately.
+ *
+ * QUEUE FULL and BUSY conditions are handled the same way.
+ * Basically all the not yet started tasks are requeued in
+ * device queue and the queue is frozen until a completion.
+ *
+ * For CHECK CONDITION and COMMAND TERMINATED status, we use
+ * the CCB of the failed command to prepare a REQUEST SENSE
+ * SCSI command and queue it to the controller queue.
+ *
+ * SCRATCHA is assumed to have been loaded with STARTPOS
+ * before the SCRIPTS called the C code.
+ */
+static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp)
+{
+ u32 startp;
+ u_char s_status = cp->ssss_status;
+ u_char h_flags = cp->host_flags;
+ int msglen;
+ int i;
+
+ /*
+ * Compute the index of the next job to start from SCRIPTS.
+ */
+ i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
+
+ /*
+ * The last CCB queued used for IARB hint may be
+ * no longer relevant. Forget it.
+ */
+#ifdef SYM_CONF_IARB_SUPPORT
+ if (np->last_cp)
+ np->last_cp = 0;
+#endif
+
+ /*
+ * Now deal with the SCSI status.
+ */
+ switch(s_status) {
+ case S_BUSY:
+ case S_QUEUE_FULL:
+ if (sym_verbose >= 2) {
+ sym_print_addr(cp->cmd, "%s\n",
+ s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
+ }
+ default: /* S_INT, S_INT_COND_MET, S_CONFLICT */
+ sym_complete_error (np, cp);
+ break;
+ case S_TERMINATED:
+ case S_CHECK_COND:
+ /*
+ * If we get an SCSI error when requesting sense, give up.
+ */
+ if (h_flags & HF_SENSE) {
+ sym_complete_error (np, cp);
+ break;
+ }
+
+ /*
+ * Dequeue all queued CCBs for that device not yet started,
+ * and restart the SCRIPTS processor immediately.
+ */
+ sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
+ OUTL_DSP(np, SCRIPTA_BA(np, start));
+
+ /*
+ * Save some info of the actual IO.
+ * Compute the data residual.
+ */
+ cp->sv_scsi_status = cp->ssss_status;
+ cp->sv_xerr_status = cp->xerr_status;
+ cp->sv_resid = sym_compute_residual(np, cp);
+
+ /*
+ * Prepare all needed data structures for
+ * requesting sense data.
+ */
+
+ cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun);
+ msglen = 1;
+
+ /*
+ * If we are currently using anything different from
+ * async. 8 bit data transfers with that target,
+ * start a negotiation, since the device may want
+ * to report us a UNIT ATTENTION condition due to
+ * a cause we currently ignore, and we donnot want
+ * to be stuck with WIDE and/or SYNC data transfer.
+ *
+ * cp->nego_status is filled by sym_prepare_nego().
+ */
+ cp->nego_status = 0;
+ msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]);
+ /*
+ * Message table indirect structure.
+ */
+ cp->phys.smsg.addr = cpu_to_scr(CCB_BA(cp, scsi_smsg2));
+ cp->phys.smsg.size = cpu_to_scr(msglen);
+
+ /*
+ * sense command
+ */
+ cp->phys.cmd.addr = cpu_to_scr(CCB_BA(cp, sensecmd));
+ cp->phys.cmd.size = cpu_to_scr(6);
+
+ /*
+ * patch requested size into sense command
+ */
+ cp->sensecmd[0] = REQUEST_SENSE;
+ cp->sensecmd[1] = 0;
+ if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7)
+ cp->sensecmd[1] = cp->lun << 5;
+ cp->sensecmd[4] = SYM_SNS_BBUF_LEN;
+ cp->data_len = SYM_SNS_BBUF_LEN;
+
+ /*
+ * sense data
+ */
+ memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN);
+ cp->phys.sense.addr = cpu_to_scr(CCB_BA(cp, sns_bbuf));
+ cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN);
+
+ /*
+ * requeue the command.
+ */
+ startp = SCRIPTB_BA(np, sdata_in);
+
+ cp->phys.head.savep = cpu_to_scr(startp);
+ cp->phys.head.lastp = cpu_to_scr(startp);
+ cp->startp = cpu_to_scr(startp);
+ cp->goalp = cpu_to_scr(startp + 16);
+
+ cp->host_xflags = 0;
+ cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
+ cp->ssss_status = S_ILLEGAL;
+ cp->host_flags = (HF_SENSE|HF_DATA_IN);
+ cp->xerr_status = 0;
+ cp->extra_bytes = 0;
+
+ cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
+
+ /*
+ * Requeue the command.
+ */
+ sym_put_start_queue(np, cp);
+
+ /*
+ * Give back to upper layer everything we have dequeued.
+ */
+ sym_flush_comp_queue(np, 0);
+ break;
+ }
+}
+
+/*
+ * After a device has accepted some management message
+ * as BUS DEVICE RESET, ABORT TASK, etc ..., or when
+ * a device signals a UNIT ATTENTION condition, some
+ * tasks are thrown away by the device. We are required
+ * to reflect that on our tasks list since the device
+ * will never complete these tasks.
+ *
+ * This function move from the BUSY queue to the COMP
+ * queue all disconnected CCBs for a given target that
+ * match the following criteria:
+ * - lun=-1 means any logical UNIT otherwise a given one.
+ * - task=-1 means any task, otherwise a given one.
+ */
+int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task)
+{
+ SYM_QUEHEAD qtmp, *qp;
+ int i = 0;
+ struct sym_ccb *cp;
+
+ /*
+ * Move the entire BUSY queue to our temporary queue.
+ */
+ sym_que_init(&qtmp);
+ sym_que_splice(&np->busy_ccbq, &qtmp);
+ sym_que_init(&np->busy_ccbq);
+
+ /*
+ * Put all CCBs that matches our criteria into
+ * the COMP queue and put back other ones into
+ * the BUSY queue.
+ */
+ while ((qp = sym_remque_head(&qtmp)) != 0) {
+ struct scsi_cmnd *cmd;
+ cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
+ cmd = cp->cmd;
+ if (cp->host_status != HS_DISCONNECT ||
+ cp->target != target ||
+ (lun != -1 && cp->lun != lun) ||
+ (task != -1 &&
+ (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
+ sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
+ continue;
+ }
+ sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
+
+ /* Preserve the software timeout condition */
+ if (sym_get_cam_status(cmd) != CAM_CMD_TIMEOUT)
+ sym_set_cam_status(cmd, cam_status);
+ ++i;
+#if 0
+printf("XXXX TASK @%p CLEARED\n", cp);
+#endif
+ }
+ return i;
+}
+
+/*
+ * chip handler for TASKS recovery
+ *
+ * We cannot safely abort a command, while the SCRIPTS
+ * processor is running, since we just would be in race
+ * with it.
+ *
+ * As long as we have tasks to abort, we keep the SEM
+ * bit set in the ISTAT. When this bit is set, the
+ * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
+ * each time it enters the scheduler.
+ *
+ * If we have to reset a target, clear tasks of a unit,
+ * or to perform the abort of a disconnected job, we
+ * restart the SCRIPTS for selecting the target. Once
+ * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
+ * If it loses arbitration, the SCRIPTS will interrupt again
+ * the next time it will enter its scheduler, and so on ...
+ *
+ * On SIR_TARGET_SELECTED, we scan for the more
+ * appropriate thing to do:
+ *
+ * - If nothing, we just sent a M_ABORT message to the
+ * target to get rid of the useless SCSI bus ownership.
+ * According to the specs, no tasks shall be affected.
+ * - If the target is to be reset, we send it a M_RESET
+ * message.
+ * - If a logical UNIT is to be cleared , we send the
+ * IDENTIFY(lun) + M_ABORT.
+ * - If an untagged task is to be aborted, we send the
+ * IDENTIFY(lun) + M_ABORT.
+ * - If a tagged task is to be aborted, we send the
+ * IDENTIFY(lun) + task attributes + M_ABORT_TAG.
+ *
+ * Once our 'kiss of death' :) message has been accepted
+ * by the target, the SCRIPTS interrupts again
+ * (SIR_ABORT_SENT). On this interrupt, we complete
+ * all the CCBs that should have been aborted by the
+ * target according to our message.
+ */
+static void sym_sir_task_recovery(struct sym_hcb *np, int num)
+{
+ SYM_QUEHEAD *qp;
+ struct sym_ccb *cp;
+ struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */
+ struct scsi_target *starget;
+ int target=-1, lun=-1, task;
+ int i, k;
+
+ switch(num) {
+ /*
+ * The SCRIPTS processor stopped before starting
+ * the next command in order to allow us to perform
+ * some task recovery.
+ */
+ case SIR_SCRIPT_STOPPED:
+ /*
+ * Do we have any target to reset or unit to clear ?
+ */
+ for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
+ tp = &np->target[i];
+ if (tp->to_reset ||
+ (tp->lun0p && tp->lun0p->to_clear)) {
+ target = i;
+ break;
+ }
+ if (!tp->lunmp)
+ continue;
+ for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
+ if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
+ target = i;
+ break;
+ }
+ }
+ if (target != -1)
+ break;
+ }
+
+ /*
+ * If not, walk the busy queue for any
+ * disconnected CCB to be aborted.
+ */
+ if (target == -1) {
+ FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
+ cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
+ if (cp->host_status != HS_DISCONNECT)
+ continue;
+ if (cp->to_abort) {
+ target = cp->target;
+ break;
+ }
+ }
+ }
+
+ /*
+ * If some target is to be selected,
+ * prepare and start the selection.
+ */
+ if (target != -1) {
+ tp = &np->target[target];
+ np->abrt_sel.sel_id = target;
+ np->abrt_sel.sel_scntl3 = tp->head.wval;
+ np->abrt_sel.sel_sxfer = tp->head.sval;
+ OUTL(np, nc_dsa, np->hcb_ba);
+ OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort));
+ return;
+ }
+
+ /*
+ * Now look for a CCB to abort that haven't started yet.
+ * Btw, the SCRIPTS processor is still stopped, so
+ * we are not in race.
+ */
+ i = 0;
+ cp = NULL;
+ FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
+ cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
+ if (cp->host_status != HS_BUSY &&
+ cp->host_status != HS_NEGOTIATE)
+ continue;
+ if (!cp->to_abort)
+ continue;
+#ifdef SYM_CONF_IARB_SUPPORT
+ /*
+ * If we are using IMMEDIATE ARBITRATION, we donnot
+ * want to cancel the last queued CCB, since the
+ * SCRIPTS may have anticipated the selection.
+ */
+ if (cp == np->last_cp) {
+ cp->to_abort = 0;
+ continue;
+ }
+#endif
+ i = 1; /* Means we have found some */
+ break;
+ }
+ if (!i) {
+ /*
+ * We are done, so we donnot need
+ * to synchronize with the SCRIPTS anylonger.
+ * Remove the SEM flag from the ISTAT.
+ */
+ np->istat_sem = 0;
+ OUTB(np, nc_istat, SIGP);
+ break;
+ }
+ /*
+ * Compute index of next position in the start
+ * queue the SCRIPTS intends to start and dequeue
+ * all CCBs for that device that haven't been started.
+ */
+ i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
+ i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
+
+ /*
+ * Make sure at least our IO to abort has been dequeued.
+ */
+#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ assert(i && sym_get_cam_status(cp->cmd) == CAM_REQUEUE_REQ);
+#else
+ sym_remque(&cp->link_ccbq);
+ sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
+#endif
+ /*
+ * Keep track in cam status of the reason of the abort.
+ */
+ if (cp->to_abort == 2)
+ sym_set_cam_status(cp->cmd, CAM_CMD_TIMEOUT);
+ else
+ sym_set_cam_status(cp->cmd, CAM_REQ_ABORTED);
+
+ /*
+ * Complete with error everything that we have dequeued.
+ */
+ sym_flush_comp_queue(np, 0);
+ break;
+ /*
+ * The SCRIPTS processor has selected a target
+ * we may have some manual recovery to perform for.
+ */
+ case SIR_TARGET_SELECTED:
+ target = INB(np, nc_sdid) & 0xf;
+ tp = &np->target[target];
+
+ np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
+
+ /*
+ * If the target is to be reset, prepare a
+ * M_RESET message and clear the to_reset flag
+ * since we donnot expect this operation to fail.
+ */
+ if (tp->to_reset) {
+ np->abrt_msg[0] = M_RESET;
+ np->abrt_tbl.size = 1;
+ tp->to_reset = 0;
+ break;
+ }
+
+ /*
+ * Otherwise, look for some logical unit to be cleared.
+ */
+ if (tp->lun0p && tp->lun0p->to_clear)
+ lun = 0;
+ else if (tp->lunmp) {
+ for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
+ if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
+ lun = k;
+ break;
+ }
+ }
+ }
+
+ /*
+ * If a logical unit is to be cleared, prepare
+ * an IDENTIFY(lun) + ABORT MESSAGE.
+ */
+ if (lun != -1) {
+ struct sym_lcb *lp = sym_lp(tp, lun);
+ lp->to_clear = 0; /* We don't expect to fail here */
+ np->abrt_msg[0] = IDENTIFY(0, lun);
+ np->abrt_msg[1] = M_ABORT;
+ np->abrt_tbl.size = 2;
+ break;
+ }
+
+ /*
+ * Otherwise, look for some disconnected job to
+ * abort for this target.
+ */
+ i = 0;
+ cp = NULL;
+ FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
+ cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
+ if (cp->host_status != HS_DISCONNECT)
+ continue;
+ if (cp->target != target)
+ continue;
+ if (!cp->to_abort)
+ continue;
+ i = 1; /* Means we have some */
+ break;
+ }
+
+ /*
+ * If we have none, probably since the device has
+ * completed the command before we won abitration,
+ * send a M_ABORT message without IDENTIFY.
+ * According to the specs, the device must just
+ * disconnect the BUS and not abort any task.
+ */
+ if (!i) {
+ np->abrt_msg[0] = M_ABORT;
+ np->abrt_tbl.size = 1;
+ break;
+ }
+
+ /*
+ * We have some task to abort.
+ * Set the IDENTIFY(lun)
+ */
+ np->abrt_msg[0] = IDENTIFY(0, cp->lun);
+
+ /*
+ * If we want to abort an untagged command, we
+ * will send a IDENTIFY + M_ABORT.
+ * Otherwise (tagged command), we will send
+ * a IDENTITFY + task attributes + ABORT TAG.
+ */
+ if (cp->tag == NO_TAG) {
+ np->abrt_msg[1] = M_ABORT;
+ np->abrt_tbl.size = 2;
+ } else {
+ np->abrt_msg[1] = cp->scsi_smsg[1];
+ np->abrt_msg[2] = cp->scsi_smsg[2];
+ np->abrt_msg[3] = M_ABORT_TAG;
+ np->abrt_tbl.size = 4;
+ }
+ /*
+ * Keep track of software timeout condition, since the
+ * peripheral driver may not count retries on abort
+ * conditions not due to timeout.
+ */
+ if (cp->to_abort == 2)
+ sym_set_cam_status(cp->cmd, CAM_CMD_TIMEOUT);
+ cp->to_abort = 0; /* We donnot expect to fail here */
+ break;
+
+ /*
+ * The target has accepted our message and switched
+ * to BUS FREE phase as we expected.
+ */
+ case SIR_ABORT_SENT:
+ target = INB(np, nc_sdid) & 0xf;
+ tp = &np->target[target];
+ starget = tp->sdev->sdev_target;
+
+ /*
+ ** If we didn't abort anything, leave here.
+ */
+ if (np->abrt_msg[0] == M_ABORT)
+ break;
+
+ /*
+ * If we sent a M_RESET, then a hardware reset has
+ * been performed by the target.
+ * - Reset everything to async 8 bit
+ * - Tell ourself to negotiate next time :-)
+ * - Prepare to clear all disconnected CCBs for
+ * this target from our task list (lun=task=-1)
+ */
+ lun = -1;
+ task = -1;
+ if (np->abrt_msg[0] == M_RESET) {
+ tp->head.sval = 0;
+ tp->head.wval = np->rv_scntl3;
+ tp->head.uval = 0;
+ spi_period(starget) = 0;
+ spi_offset(starget) = 0;
+ spi_width(starget) = 0;
+ spi_iu(starget) = 0;
+ spi_dt(starget) = 0;
+ spi_qas(starget) = 0;
+ tp->tgoal.check_nego = 1;
+ }
+
+ /*
+ * Otherwise, check for the LUN and TASK(s)
+ * concerned by the cancelation.
+ * If it is not ABORT_TAG then it is CLEAR_QUEUE
+ * or an ABORT message :-)
+ */
+ else {
+ lun = np->abrt_msg[0] & 0x3f;
+ if (np->abrt_msg[1] == M_ABORT_TAG)
+ task = np->abrt_msg[2];
+ }
+
+ /*
+ * Complete all the CCBs the device should have
+ * aborted due to our 'kiss of death' message.
+ */
+ i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
+ sym_dequeue_from_squeue(np, i, target, lun, -1);
+ sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
+ sym_flush_comp_queue(np, 0);
+
+ /*
+ * If we sent a BDR, make upper layer aware of that.
+ */
+ if (np->abrt_msg[0] == M_RESET)
+ sym_xpt_async_sent_bdr(np, target);
+ break;
+ }
+
+ /*
+ * Print to the log the message we intend to send.
+ */
+ if (num == SIR_TARGET_SELECTED) {
+ dev_info(&tp->sdev->sdev_target->dev, "control msgout:");
+ sym_printl_hex(np->abrt_msg, np->abrt_tbl.size);
+ np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
+ }
+
+ /*
+ * Let the SCRIPTS processor continue.
+ */
+ OUTONB_STD();
+}
+
+/*
+ * Gerard's alchemy:) that deals with with the data
+ * pointer for both MDP and the residual calculation.
+ *
+ * I didn't want to bloat the code by more than 200
+ * lines for the handling of both MDP and the residual.
+ * This has been achieved by using a data pointer
+ * representation consisting in an index in the data
+ * array (dp_sg) and a negative offset (dp_ofs) that
+ * have the following meaning:
+ *
+ * - dp_sg = SYM_CONF_MAX_SG
+ * we are at the end of the data script.
+ * - dp_sg < SYM_CONF_MAX_SG
+ * dp_sg points to the next entry of the scatter array
+ * we want to transfer.
+ * - dp_ofs < 0
+ * dp_ofs represents the residual of bytes of the
+ * previous entry scatter entry we will send first.
+ * - dp_ofs = 0
+ * no residual to send first.
+ *
+ * The function sym_evaluate_dp() accepts an arbitray
+ * offset (basically from the MDP message) and returns
+ * the corresponding values of dp_sg and dp_ofs.
+ */
+
+static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs)
+{
+ u32 dp_scr;
+ int dp_ofs, dp_sg, dp_sgmin;
+ int tmp;
+ struct sym_pmc *pm;
+
+ /*
+ * Compute the resulted data pointer in term of a script
+ * address within some DATA script and a signed byte offset.
+ */
+ dp_scr = scr;
+ dp_ofs = *ofs;
+ if (dp_scr == SCRIPTA_BA(np, pm0_data))
+ pm = &cp->phys.pm0;
+ else if (dp_scr == SCRIPTA_BA(np, pm1_data))
+ pm = &cp->phys.pm1;
+ else
+ pm = NULL;
+
+ if (pm) {
+ dp_scr = scr_to_cpu(pm->ret);
+ dp_ofs -= scr_to_cpu(pm->sg.size);
+ }
+
+ /*
+ * If we are auto-sensing, then we are done.
+ */
+ if (cp->host_flags & HF_SENSE) {
+ *ofs = dp_ofs;
+ return 0;
+ }
+
+ /*
+ * Deduce the index of the sg entry.
+ * Keep track of the index of the first valid entry.
+ * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
+ * end of the data.
+ */
+ tmp = scr_to_cpu(sym_goalp(cp));
+ dp_sg = SYM_CONF_MAX_SG;
+ if (dp_scr != tmp)
+ dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
+ dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
+
+ /*
+ * Move to the sg entry the data pointer belongs to.
+ *
+ * If we are inside the data area, we expect result to be:
+ *
+ * Either,
+ * dp_ofs = 0 and dp_sg is the index of the sg entry
+ * the data pointer belongs to (or the end of the data)
+ * Or,
+ * dp_ofs < 0 and dp_sg is the index of the sg entry
+ * the data pointer belongs to + 1.
+ */
+ if (dp_ofs < 0) {
+ int n;
+ while (dp_sg > dp_sgmin) {
+ --dp_sg;
+ tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
+ n = dp_ofs + (tmp & 0xffffff);
+ if (n > 0) {
+ ++dp_sg;
+ break;
+ }
+ dp_ofs = n;
+ }
+ }
+ else if (dp_ofs > 0) {
+ while (dp_sg < SYM_CONF_MAX_SG) {
+ tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
+ dp_ofs -= (tmp & 0xffffff);
+ ++dp_sg;
+ if (dp_ofs <= 0)
+ break;
+ }
+ }
+
+ /*
+ * Make sure the data pointer is inside the data area.
+ * If not, return some error.
+ */
+ if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
+ goto out_err;
+ else if (dp_sg > SYM_CONF_MAX_SG ||
+ (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
+ goto out_err;
+
+ /*
+ * Save the extreme pointer if needed.
+ */
+ if (dp_sg > cp->ext_sg ||
+ (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
+ cp->ext_sg = dp_sg;
+ cp->ext_ofs = dp_ofs;
+ }
+
+ /*
+ * Return data.
+ */
+ *ofs = dp_ofs;
+ return dp_sg;
+
+out_err:
+ return -1;
+}
+
+/*
+ * chip handler for MODIFY DATA POINTER MESSAGE
+ *
+ * We also call this function on IGNORE WIDE RESIDUE
+ * messages that do not match a SWIDE full condition.
+ * Btw, we assume in that situation that such a message
+ * is equivalent to a MODIFY DATA POINTER (offset=-1).
+ */
+
+static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs)
+{
+ int dp_ofs = ofs;
+ u32 dp_scr = sym_get_script_dp (np, cp);
+ u32 dp_ret;
+ u32 tmp;
+ u_char hflags;
+ int dp_sg;
+ struct sym_pmc *pm;
+
+ /*
+ * Not supported for auto-sense.
+ */
+ if (cp->host_flags & HF_SENSE)
+ goto out_reject;
+
+ /*
+ * Apply our alchemy:) (see comments in sym_evaluate_dp()),
+ * to the resulted data pointer.
+ */
+ dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
+ if (dp_sg < 0)
+ goto out_reject;
+
+ /*
+ * And our alchemy:) allows to easily calculate the data
+ * script address we want to return for the next data phase.
+ */
+ dp_ret = cpu_to_scr(sym_goalp(cp));
+ dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
+
+ /*
+ * If offset / scatter entry is zero we donnot need
+ * a context for the new current data pointer.
+ */
+ if (dp_ofs == 0) {
+ dp_scr = dp_ret;
+ goto out_ok;
+ }
+
+ /*
+ * Get a context for the new current data pointer.
+ */
+ hflags = INB(np, HF_PRT);
+
+ if (hflags & HF_DP_SAVED)
+ hflags ^= HF_ACT_PM;
+
+ if (!(hflags & HF_ACT_PM)) {
+ pm = &cp->phys.pm0;
+ dp_scr = SCRIPTA_BA(np, pm0_data);
+ }
+ else {
+ pm = &cp->phys.pm1;
+ dp_scr = SCRIPTA_BA(np, pm1_data);
+ }
+
+ hflags &= ~(HF_DP_SAVED);
+
+ OUTB(np, HF_PRT, hflags);
+
+ /*
+ * Set up the new current data pointer.
+ * ofs < 0 there, and for the next data phase, we
+ * want to transfer part of the data of the sg entry
+ * corresponding to index dp_sg-1 prior to returning
+ * to the main data script.
+ */
+ pm->ret = cpu_to_scr(dp_ret);
+ tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
+ tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
+ pm->sg.addr = cpu_to_scr(tmp);
+ pm->sg.size = cpu_to_scr(-dp_ofs);
+
+out_ok:
+ sym_set_script_dp (np, cp, dp_scr);
+ OUTL_DSP(np, SCRIPTA_BA(np, clrack));
+ return;
+
+out_reject:
+ OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
+}
+
+
+/*
+ * chip calculation of the data residual.
+ *
+ * As I used to say, the requirement of data residual
+ * in SCSI is broken, useless and cannot be achieved
+ * without huge complexity.
+ * But most OSes and even the official CAM require it.
+ * When stupidity happens to be so widely spread inside
+ * a community, it gets hard to convince.
+ *
+ * Anyway, I don't care, since I am not going to use
+ * any software that considers this data residual as
+ * a relevant information. :)
+ */
+
+int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp)
+{
+ int dp_sg, dp_sgmin, resid = 0;
+ int dp_ofs = 0;
+
+ /*
+ * Check for some data lost or just thrown away.
+ * We are not required to be quite accurate in this
+ * situation. Btw, if we are odd for output and the
+ * device claims some more data, it may well happen
+ * than our residual be zero. :-)
+ */
+ if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
+ if (cp->xerr_status & XE_EXTRA_DATA)
+ resid -= cp->extra_bytes;
+ if (cp->xerr_status & XE_SODL_UNRUN)
+ ++resid;
+ if (cp->xerr_status & XE_SWIDE_OVRUN)
+ --resid;
+ }
+
+ /*
+ * If all data has been transferred,
+ * there is no residual.
+ */
+ if (cp->phys.head.lastp == sym_goalp(cp))
+ return resid;
+
+ /*
+ * If no data transfer occurs, or if the data
+ * pointer is weird, return full residual.
+ */
+ if (cp->startp == cp->phys.head.lastp ||
+ sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
+ &dp_ofs) < 0) {
+ return cp->data_len;
+ }
+
+ /*
+ * If we were auto-sensing, then we are done.
+ */
+ if (cp->host_flags & HF_SENSE) {
+ return -dp_ofs;
+ }
+
+ /*
+ * We are now full comfortable in the computation
+ * of the data residual (2's complement).
+ */
+ dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
+ resid = -cp->ext_ofs;
+ for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
+ u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
+ resid += (tmp & 0xffffff);
+ }
+
+ /*
+ * Hopefully, the result is not too wrong.
+ */
+ return resid;
+}
+
+/*
+ * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
+ *
+ * When we try to negotiate, we append the negotiation message
+ * to the identify and (maybe) simple tag message.
+ * The host status field is set to HS_NEGOTIATE to mark this
+ * situation.
+ *
+ * If the target doesn't answer this message immediately
+ * (as required by the standard), the SIR_NEGO_FAILED interrupt
+ * will be raised eventually.
+ * The handler removes the HS_NEGOTIATE status, and sets the
+ * negotiated value to the default (async / nowide).
+ *
+ * If we receive a matching answer immediately, we check it
+ * for validity, and set the values.
+ *
+ * If we receive a Reject message immediately, we assume the
+ * negotiation has failed, and fall back to standard values.
+ *
+ * If we receive a negotiation message while not in HS_NEGOTIATE
+ * state, it's a target initiated negotiation. We prepare a
+ * (hopefully) valid answer, set our parameters, and send back
+ * this answer to the target.
+ *
+ * If the target doesn't fetch the answer (no message out phase),
+ * we assume the negotiation has failed, and fall back to default
+ * settings (SIR_NEGO_PROTO interrupt).
+ *
+ * When we set the values, we adjust them in all ccbs belonging
+ * to this target, in the controller's register, and in the "phys"
+ * field of the controller's struct sym_hcb.
+ */
+
+/*
+ * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
+ */
+static int
+sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
+{
+ int target = cp->target;
+ u_char chg, ofs, per, fak, div;
+
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ sym_print_nego_msg(np, target, "sync msgin", np->msgin);
+ }
+
+ /*
+ * Get requested values.
+ */
+ chg = 0;
+ per = np->msgin[3];
+ ofs = np->msgin[4];
+
+ /*
+ * Check values against our limits.
+ */
+ if (ofs) {
+ if (ofs > np->maxoffs)
+ {chg = 1; ofs = np->maxoffs;}
+ }
+
+ if (ofs) {
+ if (per < np->minsync)
+ {chg = 1; per = np->minsync;}
+ }
+
+ /*
+ * Get new chip synchronous parameters value.
+ */
+ div = fak = 0;
+ if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
+ goto reject_it;
+
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ sym_print_addr(cp->cmd,
+ "sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
+ ofs, per, div, fak, chg);
+ }
+
+ /*
+ * If it was an answer we want to change,
+ * then it isn't acceptable. Reject it.
+ */
+ if (!req && chg)
+ goto reject_it;
+
+ /*
+ * Apply new values.
+ */
+ sym_setsync (np, target, ofs, per, div, fak);
+
+ /*
+ * It was an answer. We are done.
+ */
+ if (!req)
+ return 0;
+
+ /*
+ * It was a request. Prepare an answer message.
+ */
+ np->msgout[0] = M_EXTENDED;
+ np->msgout[1] = 3;
+ np->msgout[2] = M_X_SYNC_REQ;
+ np->msgout[3] = per;
+ np->msgout[4] = ofs;
+
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ sym_print_nego_msg(np, target, "sync msgout", np->msgout);
+ }
+
+ np->msgin [0] = M_NOOP;
+
+ return 0;
+
+reject_it:
+ sym_setsync (np, target, 0, 0, 0, 0);
+ return -1;
+}
+
+static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
+{
+ int req = 1;
+ int result;
+
+ /*
+ * Request or answer ?
+ */
+ if (INB(np, HS_PRT) == HS_NEGOTIATE) {
+ OUTB(np, HS_PRT, HS_BUSY);
+ if (cp->nego_status && cp->nego_status != NS_SYNC)
+ goto reject_it;
+ req = 0;
+ }
+
+ /*
+ * Check and apply new values.
+ */
+ result = sym_sync_nego_check(np, req, cp);
+ if (result) /* Not acceptable, reject it */
+ goto reject_it;
+ if (req) { /* Was a request, send response. */
+ cp->nego_status = NS_SYNC;
+ OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
+ }
+ else /* Was a response, we are done. */
+ OUTL_DSP(np, SCRIPTA_BA(np, clrack));
+ return;
+
+reject_it:
+ OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
+}
+
+/*
+ * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
+ */
+static int
+sym_ppr_nego_check(struct sym_hcb *np, int req, int target)
+{
+ struct sym_tcb *tp = &np->target[target];
+ unsigned char fak, div;
+ int dt, chg = 0;
+
+ unsigned char per = np->msgin[3];
+ unsigned char ofs = np->msgin[5];
+ unsigned char wide = np->msgin[6];
+ unsigned char opts = np->msgin[7] & PPR_OPT_MASK;
+
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ sym_print_nego_msg(np, target, "ppr msgin", np->msgin);
+ }
+
+ /*
+ * Check values against our limits.
+ */
+ if (wide > np->maxwide) {
+ chg = 1;
+ wide = np->maxwide;
+ }
+ if (!wide || !(np->features & FE_U3EN))
+ opts = 0;
+
+ if (opts != (np->msgin[7] & PPR_OPT_MASK))
+ chg = 1;
+
+ dt = opts & PPR_OPT_DT;
+
+ if (ofs) {
+ unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs;
+ if (ofs > maxoffs) {
+ chg = 1;
+ ofs = maxoffs;
+ }
+ }
+
+ if (ofs) {
+ unsigned char minsync = dt ? np->minsync_dt : np->minsync;
+ if (per < minsync) {
+ chg = 1;
+ per = minsync;
+ }
+ }
+
+ /*
+ * Get new chip synchronous parameters value.
+ */
+ div = fak = 0;
+ if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
+ goto reject_it;
+
+ /*
+ * If it was an answer we want to change,
+ * then it isn't acceptable. Reject it.
+ */
+ if (!req && chg)
+ goto reject_it;
+
+ /*
+ * Apply new values.
+ */
+ sym_setpprot(np, target, opts, ofs, per, wide, div, fak);
+
+ /*
+ * It was an answer. We are done.
+ */
+ if (!req)
+ return 0;
+
+ /*
+ * It was a request. Prepare an answer message.
+ */
+ np->msgout[0] = M_EXTENDED;
+ np->msgout[1] = 6;
+ np->msgout[2] = M_X_PPR_REQ;
+ np->msgout[3] = per;
+ np->msgout[4] = 0;
+ np->msgout[5] = ofs;
+ np->msgout[6] = wide;
+ np->msgout[7] = opts;
+
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ sym_print_nego_msg(np, target, "ppr msgout", np->msgout);
+ }
+
+ np->msgin [0] = M_NOOP;
+
+ return 0;
+
+reject_it:
+ sym_setpprot (np, target, 0, 0, 0, 0, 0, 0);
+ /*
+ * If it is a device response that should result in
+ * ST, we may want to try a legacy negotiation later.
+ */
+ if (!req && !opts) {
+ tp->tgoal.period = per;
+ tp->tgoal.offset = ofs;
+ tp->tgoal.width = wide;
+ tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
+ tp->tgoal.check_nego = 1;
+ }
+ return -1;
+}
+
+static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
+{
+ int req = 1;
+ int result;
+
+ /*
+ * Request or answer ?
+ */
+ if (INB(np, HS_PRT) == HS_NEGOTIATE) {
+ OUTB(np, HS_PRT, HS_BUSY);
+ if (cp->nego_status && cp->nego_status != NS_PPR)
+ goto reject_it;
+ req = 0;
+ }
+
+ /*
+ * Check and apply new values.
+ */
+ result = sym_ppr_nego_check(np, req, cp->target);
+ if (result) /* Not acceptable, reject it */
+ goto reject_it;
+ if (req) { /* Was a request, send response. */
+ cp->nego_status = NS_PPR;
+ OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp));
+ }
+ else /* Was a response, we are done. */
+ OUTL_DSP(np, SCRIPTA_BA(np, clrack));
+ return;
+
+reject_it:
+ OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
+}
+
+/*
+ * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
+ */
+static int
+sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
+{
+ int target = cp->target;
+ u_char chg, wide;
+
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ sym_print_nego_msg(np, target, "wide msgin", np->msgin);
+ }
+
+ /*
+ * Get requested values.
+ */
+ chg = 0;
+ wide = np->msgin[3];
+
+ /*
+ * Check values against our limits.
+ */
+ if (wide > np->maxwide) {
+ chg = 1;
+ wide = np->maxwide;
+ }
+
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n",
+ wide, chg);
+ }
+
+ /*
+ * If it was an answer we want to change,
+ * then it isn't acceptable. Reject it.
+ */
+ if (!req && chg)
+ goto reject_it;
+
+ /*
+ * Apply new values.
+ */
+ sym_setwide (np, target, wide);
+
+ /*
+ * It was an answer. We are done.
+ */
+ if (!req)
+ return 0;
+
+ /*
+ * It was a request. Prepare an answer message.
+ */
+ np->msgout[0] = M_EXTENDED;
+ np->msgout[1] = 2;
+ np->msgout[2] = M_X_WIDE_REQ;
+ np->msgout[3] = wide;
+
+ np->msgin [0] = M_NOOP;
+
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ sym_print_nego_msg(np, target, "wide msgout", np->msgout);
+ }
+
+ return 0;
+
+reject_it:
+ return -1;
+}
+
+static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
+{
+ int req = 1;
+ int result;
+
+ /*
+ * Request or answer ?
+ */
+ if (INB(np, HS_PRT) == HS_NEGOTIATE) {
+ OUTB(np, HS_PRT, HS_BUSY);
+ if (cp->nego_status && cp->nego_status != NS_WIDE)
+ goto reject_it;
+ req = 0;
+ }
+
+ /*
+ * Check and apply new values.
+ */
+ result = sym_wide_nego_check(np, req, cp);
+ if (result) /* Not acceptable, reject it */
+ goto reject_it;
+ if (req) { /* Was a request, send response. */
+ cp->nego_status = NS_WIDE;
+ OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp));
+ } else { /* Was a response. */
+ /*
+ * Negotiate for SYNC immediately after WIDE response.
+ * This allows to negotiate for both WIDE and SYNC on
+ * a single SCSI command (Suggested by Justin Gibbs).
+ */
+ if (tp->tgoal.offset) {
+ np->msgout[0] = M_EXTENDED;
+ np->msgout[1] = 3;
+ np->msgout[2] = M_X_SYNC_REQ;
+ np->msgout[3] = tp->tgoal.period;
+ np->msgout[4] = tp->tgoal.offset;
+
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ sym_print_nego_msg(np, cp->target,
+ "sync msgout", np->msgout);
+ }
+
+ cp->nego_status = NS_SYNC;
+ OUTB(np, HS_PRT, HS_NEGOTIATE);
+ OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
+ return;
+ } else
+ OUTL_DSP(np, SCRIPTA_BA(np, clrack));
+ }
+
+ return;
+
+reject_it:
+ OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
+}
+
+/*
+ * Reset DT, SYNC or WIDE to default settings.
+ *
+ * Called when a negotiation does not succeed either
+ * on rejection or on protocol error.
+ *
+ * A target that understands a PPR message should never
+ * reject it, and messing with it is very unlikely.
+ * So, if a PPR makes problems, we may just want to
+ * try a legacy negotiation later.
+ */
+static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
+{
+ switch (cp->nego_status) {
+ case NS_PPR:
+#if 0
+ sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0);
+#else
+ if (tp->tgoal.period < np->minsync)
+ tp->tgoal.period = np->minsync;
+ if (tp->tgoal.offset > np->maxoffs)
+ tp->tgoal.offset = np->maxoffs;
+ tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
+ tp->tgoal.check_nego = 1;
+#endif
+ break;
+ case NS_SYNC:
+ sym_setsync (np, cp->target, 0, 0, 0, 0);
+ break;
+ case NS_WIDE:
+ sym_setwide (np, cp->target, 0);
+ break;
+ }
+ np->msgin [0] = M_NOOP;
+ np->msgout[0] = M_NOOP;
+ cp->nego_status = 0;
+}
+
+/*
+ * chip handler for MESSAGE REJECT received in response to
+ * PPR, WIDE or SYNCHRONOUS negotiation.
+ */
+static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
+{
+ sym_nego_default(np, tp, cp);
+ OUTB(np, HS_PRT, HS_BUSY);
+}
+
+/*
+ * chip exception handler for programmed interrupts.
+ */
+static void sym_int_sir (struct sym_hcb *np)
+{
+ u_char num = INB(np, nc_dsps);
+ u32 dsa = INL(np, nc_dsa);
+ struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
+ u_char target = INB(np, nc_sdid) & 0x0f;
+ struct sym_tcb *tp = &np->target[target];
+ int tmp;
+
+ if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
+
+ switch (num) {
+#if SYM_CONF_DMA_ADDRESSING_MODE == 2
+ /*
+ * SCRIPTS tell us that we may have to update
+ * 64 bit DMA segment registers.
+ */
+ case SIR_DMAP_DIRTY:
+ sym_update_dmap_regs(np);
+ goto out;
+#endif
+ /*
+ * Command has been completed with error condition
+ * or has been auto-sensed.
+ */
+ case SIR_COMPLETE_ERROR:
+ sym_complete_error(np, cp);
+ return;
+ /*
+ * The C code is currently trying to recover from something.
+ * Typically, user want to abort some command.
+ */
+ case SIR_SCRIPT_STOPPED:
+ case SIR_TARGET_SELECTED:
+ case SIR_ABORT_SENT:
+ sym_sir_task_recovery(np, num);
+ return;
+ /*
+ * The device didn't go to MSG OUT phase after having
+ * been selected with ATN. We donnot want to handle
+ * that.
+ */
+ case SIR_SEL_ATN_NO_MSG_OUT:
+ printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
+ sym_name (np), target);
+ goto out_stuck;
+ /*
+ * The device didn't switch to MSG IN phase after
+ * having reseleted the initiator.
+ */
+ case SIR_RESEL_NO_MSG_IN:
+ printf ("%s:%d: No MSG IN phase after reselection.\n",
+ sym_name (np), target);
+ goto out_stuck;
+ /*
+ * After reselection, the device sent a message that wasn't
+ * an IDENTIFY.
+ */
+ case SIR_RESEL_NO_IDENTIFY:
+ printf ("%s:%d: No IDENTIFY after reselection.\n",
+ sym_name (np), target);
+ goto out_stuck;
+ /*
+ * The device reselected a LUN we donnot know about.
+ */
+ case SIR_RESEL_BAD_LUN:
+ np->msgout[0] = M_RESET;
+ goto out;
+ /*
+ * The device reselected for an untagged nexus and we
+ * haven't any.
+ */
+ case SIR_RESEL_BAD_I_T_L:
+ np->msgout[0] = M_ABORT;
+ goto out;
+ /*
+ * The device reselected for a tagged nexus that we donnot
+ * have.
+ */
+ case SIR_RESEL_BAD_I_T_L_Q:
+ np->msgout[0] = M_ABORT_TAG;
+ goto out;
+ /*
+ * The SCRIPTS let us know that the device has grabbed
+ * our message and will abort the job.
+ */
+ case SIR_RESEL_ABORTED:
+ np->lastmsg = np->msgout[0];
+ np->msgout[0] = M_NOOP;
+ printf ("%s:%d: message %x sent on bad reselection.\n",
+ sym_name (np), target, np->lastmsg);
+ goto out;
+ /*
+ * The SCRIPTS let us know that a message has been
+ * successfully sent to the device.
+ */
+ case SIR_MSG_OUT_DONE:
+ np->lastmsg = np->msgout[0];
+ np->msgout[0] = M_NOOP;
+ /* Should we really care of that */
+ if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
+ if (cp) {
+ cp->xerr_status &= ~XE_PARITY_ERR;
+ if (!cp->xerr_status)
+ OUTOFFB(np, HF_PRT, HF_EXT_ERR);
+ }
+ }
+ goto out;
+ /*
+ * The device didn't send a GOOD SCSI status.
+ * We may have some work to do prior to allow
+ * the SCRIPTS processor to continue.
+ */
+ case SIR_BAD_SCSI_STATUS:
+ if (!cp)
+ goto out;
+ sym_sir_bad_scsi_status(np, num, cp);
+ return;
+ /*
+ * We are asked by the SCRIPTS to prepare a
+ * REJECT message.
+ */
+ case SIR_REJECT_TO_SEND:
+ sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
+ np->msgout[0] = M_REJECT;
+ goto out;
+ /*
+ * We have been ODD at the end of a DATA IN
+ * transfer and the device didn't send a
+ * IGNORE WIDE RESIDUE message.
+ * It is a data overrun condition.
+ */
+ case SIR_SWIDE_OVERRUN:
+ if (cp) {
+ OUTONB(np, HF_PRT, HF_EXT_ERR);
+ cp->xerr_status |= XE_SWIDE_OVRUN;
+ }
+ goto out;
+ /*
+ * We have been ODD at the end of a DATA OUT
+ * transfer.
+ * It is a data underrun condition.
+ */
+ case SIR_SODL_UNDERRUN:
+ if (cp) {
+ OUTONB(np, HF_PRT, HF_EXT_ERR);
+ cp->xerr_status |= XE_SODL_UNRUN;
+ }
+ goto out;
+ /*
+ * The device wants us to tranfer more data than
+ * expected or in the wrong direction.
+ * The number of extra bytes is in scratcha.
+ * It is a data overrun condition.
+ */
+ case SIR_DATA_OVERRUN:
+ if (cp) {
+ OUTONB(np, HF_PRT, HF_EXT_ERR);
+ cp->xerr_status |= XE_EXTRA_DATA;
+ cp->extra_bytes += INL(np, nc_scratcha);
+ }
+ goto out;
+ /*
+ * The device switched to an illegal phase (4/5).
+ */
+ case SIR_BAD_PHASE:
+ if (cp) {
+ OUTONB(np, HF_PRT, HF_EXT_ERR);
+ cp->xerr_status |= XE_BAD_PHASE;
+ }
+ goto out;
+ /*
+ * We received a message.
+ */
+ case SIR_MSG_RECEIVED:
+ if (!cp)
+ goto out_stuck;
+ switch (np->msgin [0]) {
+ /*
+ * We received an extended message.
+ * We handle MODIFY DATA POINTER, SDTR, WDTR
+ * and reject all other extended messages.
+ */
+ case M_EXTENDED:
+ switch (np->msgin [2]) {
+ case M_X_MODIFY_DP:
+ if (DEBUG_FLAGS & DEBUG_POINTER)
+ sym_print_msg(cp,"modify DP",np->msgin);
+ tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
+ (np->msgin[5]<<8) + (np->msgin[6]);
+ sym_modify_dp(np, tp, cp, tmp);
+ return;
+ case M_X_SYNC_REQ:
+ sym_sync_nego(np, tp, cp);
+ return;
+ case M_X_PPR_REQ:
+ sym_ppr_nego(np, tp, cp);
+ return;
+ case M_X_WIDE_REQ:
+ sym_wide_nego(np, tp, cp);
+ return;
+ default:
+ goto out_reject;
+ }
+ break;
+ /*
+ * We received a 1/2 byte message not handled from SCRIPTS.
+ * We are only expecting MESSAGE REJECT and IGNORE WIDE
+ * RESIDUE messages that haven't been anticipated by
+ * SCRIPTS on SWIDE full condition. Unanticipated IGNORE
+ * WIDE RESIDUE messages are aliased as MODIFY DP (-1).
+ */
+ case M_IGN_RESIDUE:
+ if (DEBUG_FLAGS & DEBUG_POINTER)
+ sym_print_msg(cp,"ign wide residue", np->msgin);
+ if (cp->host_flags & HF_SENSE)
+ OUTL_DSP(np, SCRIPTA_BA(np, clrack));
+ else
+ sym_modify_dp(np, tp, cp, -1);
+ return;
+ case M_REJECT:
+ if (INB(np, HS_PRT) == HS_NEGOTIATE)
+ sym_nego_rejected(np, tp, cp);
+ else {
+ sym_print_addr(cp->cmd,
+ "M_REJECT received (%x:%x).\n",
+ scr_to_cpu(np->lastmsg), np->msgout[0]);
+ }
+ goto out_clrack;
+ break;
+ default:
+ goto out_reject;
+ }
+ break;
+ /*
+ * We received an unknown message.
+ * Ignore all MSG IN phases and reject it.
+ */
+ case SIR_MSG_WEIRD:
+ sym_print_msg(cp, "WEIRD message received", np->msgin);
+ OUTL_DSP(np, SCRIPTB_BA(np, msg_weird));
+ return;
+ /*
+ * Negotiation failed.
+ * Target does not send us the reply.
+ * Remove the HS_NEGOTIATE status.
+ */
+ case SIR_NEGO_FAILED:
+ OUTB(np, HS_PRT, HS_BUSY);
+ /*
+ * Negotiation failed.
+ * Target does not want answer message.
+ */
+ case SIR_NEGO_PROTO:
+ sym_nego_default(np, tp, cp);
+ goto out;
+ }
+
+out:
+ OUTONB_STD();
+ return;
+out_reject:
+ OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
+ return;
+out_clrack:
+ OUTL_DSP(np, SCRIPTA_BA(np, clrack));
+ return;
+out_stuck:
+ return;
+}
+
+/*
+ * Acquire a control block
+ */
+struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order)
+{
+ u_char tn = cmd->device->id;
+ u_char ln = cmd->device->lun;
+ struct sym_tcb *tp = &np->target[tn];
+ struct sym_lcb *lp = sym_lp(tp, ln);
+ u_short tag = NO_TAG;
+ SYM_QUEHEAD *qp;
+ struct sym_ccb *cp = NULL;
+
+ /*
+ * Look for a free CCB
+ */
+ if (sym_que_empty(&np->free_ccbq))
+ sym_alloc_ccb(np);
+ qp = sym_remque_head(&np->free_ccbq);
+ if (!qp)
+ goto out;
+ cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
+
+#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ /*
+ * If the LCB is not yet available and the LUN
+ * has been probed ok, try to allocate the LCB.
+ */
+ if (!lp && sym_is_bit(tp->lun_map, ln)) {
+ lp = sym_alloc_lcb(np, tn, ln);
+ if (!lp)
+ goto out_free;
+ }
+#endif
+
+ /*
+ * If the LCB is not available here, then the
+ * logical unit is not yet discovered. For those
+ * ones only accept 1 SCSI IO per logical unit,
+ * since we cannot allow disconnections.
+ */
+ if (!lp) {
+ if (!sym_is_bit(tp->busy0_map, ln))
+ sym_set_bit(tp->busy0_map, ln);
+ else
+ goto out_free;
+ } else {
+ /*
+ * If we have been asked for a tagged command.
+ */
+ if (tag_order) {
+ /*
+ * Debugging purpose.
+ */
+#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ assert(lp->busy_itl == 0);
+#endif
+ /*
+ * Allocate resources for tags if not yet.
+ */
+ if (!lp->cb_tags) {
+ sym_alloc_lcb_tags(np, tn, ln);
+ if (!lp->cb_tags)
+ goto out_free;
+ }
+ /*
+ * Get a tag for this SCSI IO and set up
+ * the CCB bus address for reselection,
+ * and count it for this LUN.
+ * Toggle reselect path to tagged.
+ */
+ if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
+ tag = lp->cb_tags[lp->ia_tag];
+ if (++lp->ia_tag == SYM_CONF_MAX_TASK)
+ lp->ia_tag = 0;
+ ++lp->busy_itlq;
+#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
+ lp->head.resel_sa =
+ cpu_to_scr(SCRIPTA_BA(np, resel_tag));
+#endif
+#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
+ cp->tags_si = lp->tags_si;
+ ++lp->tags_sum[cp->tags_si];
+ ++lp->tags_since;
+#endif
+ }
+ else
+ goto out_free;
+ }
+ /*
+ * This command will not be tagged.
+ * If we already have either a tagged or untagged
+ * one, refuse to overlap this untagged one.
+ */
+ else {
+ /*
+ * Debugging purpose.
+ */
+#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
+#endif
+ /*
+ * Count this nexus for this LUN.
+ * Set up the CCB bus address for reselection.
+ * Toggle reselect path to untagged.
+ */
+ ++lp->busy_itl;
+#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ if (lp->busy_itl == 1) {
+ lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
+ lp->head.resel_sa =
+ cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
+ }
+ else
+ goto out_free;
+#endif
+ }
+ }
+ /*
+ * Put the CCB into the busy queue.
+ */
+ sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
+#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ if (lp) {
+ sym_remque(&cp->link2_ccbq);
+ sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq);
+ }
+
+#endif
+ /*
+ * Remember all informations needed to free this CCB.
+ */
+ cp->to_abort = 0;
+ cp->tag = tag;
+ cp->order = tag_order;
+ cp->target = tn;
+ cp->lun = ln;
+
+ if (DEBUG_FLAGS & DEBUG_TAGS) {
+ sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag);
+ }
+
+out:
+ return cp;
+out_free:
+ sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
+ return NULL;
+}
+
+/*
+ * Release one control block
+ */
+void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp)
+{
+ struct sym_tcb *tp = &np->target[cp->target];
+ struct sym_lcb *lp = sym_lp(tp, cp->lun);
+
+ if (DEBUG_FLAGS & DEBUG_TAGS) {
+ sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n",
+ cp, cp->tag);
+ }
+
+ /*
+ * If LCB available,
+ */
+ if (lp) {
+ /*
+ * If tagged, release the tag, set the relect path
+ */
+ if (cp->tag != NO_TAG) {
+#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
+ --lp->tags_sum[cp->tags_si];
+#endif
+ /*
+ * Free the tag value.
+ */
+ lp->cb_tags[lp->if_tag] = cp->tag;
+ if (++lp->if_tag == SYM_CONF_MAX_TASK)
+ lp->if_tag = 0;
+ /*
+ * Make the reselect path invalid,
+ * and uncount this CCB.
+ */
+ lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
+ --lp->busy_itlq;
+ } else { /* Untagged */
+ /*
+ * Make the reselect path invalid,
+ * and uncount this CCB.
+ */
+ lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
+ --lp->busy_itl;
+ }
+ /*
+ * If no JOB active, make the LUN reselect path invalid.
+ */
+ if (lp->busy_itlq == 0 && lp->busy_itl == 0)
+ lp->head.resel_sa =
+ cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
+ }
+ /*
+ * Otherwise, we only accept 1 IO per LUN.
+ * Clear the bit that keeps track of this IO.
+ */
+ else
+ sym_clr_bit(tp->busy0_map, cp->lun);
+
+ /*
+ * We donnot queue more than 1 ccb per target
+ * with negotiation at any time. If this ccb was
+ * used for negotiation, clear this info in the tcb.
+ */
+ if (cp == tp->nego_cp)
+ tp->nego_cp = NULL;
+
+#ifdef SYM_CONF_IARB_SUPPORT
+ /*
+ * If we just complete the last queued CCB,
+ * clear this info that is no longer relevant.
+ */
+ if (cp == np->last_cp)
+ np->last_cp = 0;
+#endif
+
+ /*
+ * Make this CCB available.
+ */
+ cp->cmd = NULL;
+ cp->host_status = HS_IDLE;
+ sym_remque(&cp->link_ccbq);
+ sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
+
+#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ if (lp) {
+ sym_remque(&cp->link2_ccbq);
+ sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq);
+ if (cp->started) {
+ if (cp->tag != NO_TAG)
+ --lp->started_tags;
+ else
+ --lp->started_no_tag;
+ }
+ }
+ cp->started = 0;
+#endif
+}
+
+/*
+ * Allocate a CCB from memory and initialize its fixed part.
+ */
+static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np)
+{
+ struct sym_ccb *cp = NULL;
+ int hcode;
+
+ /*
+ * Prevent from allocating more CCBs than we can
+ * queue to the controller.
+ */
+ if (np->actccbs >= SYM_CONF_MAX_START)
+ return NULL;
+
+ /*
+ * Allocate memory for this CCB.
+ */
+ cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
+ if (!cp)
+ goto out_free;
+
+ /*
+ * Count it.
+ */
+ np->actccbs++;
+
+ /*
+ * Compute the bus address of this ccb.
+ */
+ cp->ccb_ba = vtobus(cp);
+
+ /*
+ * Insert this ccb into the hashed list.
+ */
+ hcode = CCB_HASH_CODE(cp->ccb_ba);
+ cp->link_ccbh = np->ccbh[hcode];
+ np->ccbh[hcode] = cp;
+
+ /*
+ * Initialyze the start and restart actions.
+ */
+ cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, idle));
+ cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
+
+ /*
+ * Initilialyze some other fields.
+ */
+ cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
+
+ /*
+ * Chain into free ccb queue.
+ */
+ sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
+
+ /*
+ * Chain into optionnal lists.
+ */
+#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq);
+#endif
+ return cp;
+out_free:
+ if (cp)
+ sym_mfree_dma(cp, sizeof(*cp), "CCB");
+ return NULL;
+}
+
+/*
+ * Look up a CCB from a DSA value.
+ */
+static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa)
+{
+ int hcode;
+ struct sym_ccb *cp;
+
+ hcode = CCB_HASH_CODE(dsa);
+ cp = np->ccbh[hcode];
+ while (cp) {
+ if (cp->ccb_ba == dsa)
+ break;
+ cp = cp->link_ccbh;
+ }
+
+ return cp;
+}
+
+/*
+ * Target control block initialisation.
+ * Nothing important to do at the moment.
+ */
+static void sym_init_tcb (struct sym_hcb *np, u_char tn)
+{
+#if 0 /* Hmmm... this checking looks paranoid. */
+ /*
+ * Check some alignments required by the chip.
+ */
+ assert (((offsetof(struct sym_reg, nc_sxfer) ^
+ offsetof(struct sym_tcb, head.sval)) &3) == 0);
+ assert (((offsetof(struct sym_reg, nc_scntl3) ^
+ offsetof(struct sym_tcb, head.wval)) &3) == 0);
+#endif
+}
+
+/*
+ * Lun control block allocation and initialization.
+ */
+struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln)
+{
+ struct sym_tcb *tp = &np->target[tn];
+ struct sym_lcb *lp = sym_lp(tp, ln);
+
+ /*
+ * Already done, just return.
+ */
+ if (lp)
+ return lp;
+
+ /*
+ * Donnot allow LUN control block
+ * allocation for not probed LUNs.
+ */
+ if (!sym_is_bit(tp->lun_map, ln))
+ return NULL;
+
+ /*
+ * Initialize the target control block if not yet.
+ */
+ sym_init_tcb (np, tn);
+
+ /*
+ * Allocate the LCB bus address array.
+ * Compute the bus address of this table.
+ */
+ if (ln && !tp->luntbl) {
+ int i;
+
+ tp->luntbl = sym_calloc_dma(256, "LUNTBL");
+ if (!tp->luntbl)
+ goto fail;
+ for (i = 0 ; i < 64 ; i++)
+ tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
+ tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
+ }
+
+ /*
+ * Allocate the table of pointers for LUN(s) > 0, if needed.
+ */
+ if (ln && !tp->lunmp) {
+ tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *),
+ GFP_KERNEL);
+ if (!tp->lunmp)
+ goto fail;
+ }
+
+ /*
+ * Allocate the lcb.
+ * Make it available to the chip.
+ */
+ lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
+ if (!lp)
+ goto fail;
+ if (ln) {
+ tp->lunmp[ln] = lp;
+ tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
+ }
+ else {
+ tp->lun0p = lp;
+ tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
+ }
+
+ /*
+ * Let the itl task point to error handling.
+ */
+ lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
+
+ /*
+ * Set the reselect pattern to our default. :)
+ */
+ lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
+
+ /*
+ * Set user capabilities.
+ */
+ lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
+
+#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ /*
+ * Initialize device queueing.
+ */
+ sym_que_init(&lp->waiting_ccbq);
+ sym_que_init(&lp->started_ccbq);
+ lp->started_max = SYM_CONF_MAX_TASK;
+ lp->started_limit = SYM_CONF_MAX_TASK;
+#endif
+ /*
+ * If we are busy, count the IO.
+ */
+ if (sym_is_bit(tp->busy0_map, ln)) {
+ lp->busy_itl = 1;
+ sym_clr_bit(tp->busy0_map, ln);
+ }
+fail:
+ return lp;
+}
+
+/*
+ * Allocate LCB resources for tagged command queuing.
+ */
+static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln)
+{
+ struct sym_tcb *tp = &np->target[tn];
+ struct sym_lcb *lp = sym_lp(tp, ln);
+ int i;
+
+ /*
+ * If LCB not available, try to allocate it.
+ */
+ if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
+ goto fail;
+
+ /*
+ * Allocate the task table and and the tag allocation
+ * circular buffer. We want both or none.
+ */
+ lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
+ if (!lp->itlq_tbl)
+ goto fail;
+ lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_KERNEL);
+ if (!lp->cb_tags) {
+ sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
+ lp->itlq_tbl = NULL;
+ goto fail;
+ }
+
+ /*
+ * Initialize the task table with invalid entries.
+ */
+ for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
+ lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
+
+ /*
+ * Fill up the tag buffer with tag numbers.
+ */
+ for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
+ lp->cb_tags[i] = i;
+
+ /*
+ * Make the task table available to SCRIPTS,
+ * And accept tagged commands now.
+ */
+ lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
+
+ return;
+fail:
+ return;
+}
+
+/*
+ * Queue a SCSI IO to the controller.
+ */
+int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
+{
+ struct scsi_device *sdev = cmd->device;
+ struct sym_tcb *tp;
+ struct sym_lcb *lp;
+ u_char *msgptr;
+ u_int msglen;
+ int can_disconnect;
+
+ /*
+ * Keep track of the IO in our CCB.
+ */
+ cp->cmd = cmd;
+
+ /*
+ * Retrieve the target descriptor.
+ */
+ tp = &np->target[cp->target];
+
+ /*
+ * Retrieve the lun descriptor.
+ */
+ lp = sym_lp(tp, sdev->lun);
+
+ can_disconnect = (cp->tag != NO_TAG) ||
+ (lp && (lp->curr_flags & SYM_DISC_ENABLED));
+
+ msgptr = cp->scsi_smsg;
+ msglen = 0;
+ msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun);
+
+ /*
+ * Build the tag message if present.
+ */
+ if (cp->tag != NO_TAG) {
+ u_char order = cp->order;
+
+ switch(order) {
+ case M_ORDERED_TAG:
+ break;
+ case M_HEAD_TAG:
+ break;
+ default:
+ order = M_SIMPLE_TAG;
+ }
+#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
+ /*
+ * Avoid too much reordering of SCSI commands.
+ * The algorithm tries to prevent completion of any
+ * tagged command from being delayed against more
+ * than 3 times the max number of queued commands.
+ */
+ if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) {
+ lp->tags_si = !(lp->tags_si);
+ if (lp->tags_sum[lp->tags_si]) {
+ order = M_ORDERED_TAG;
+ if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) {
+ sym_print_addr(cmd,
+ "ordered tag forced.\n");
+ }
+ }
+ lp->tags_since = 0;
+ }
+#endif
+ msgptr[msglen++] = order;
+
+ /*
+ * For less than 128 tags, actual tags are numbered
+ * 1,3,5,..2*MAXTAGS+1,since we may have to deal
+ * with devices that have problems with #TAG 0 or too
+ * great #TAG numbers. For more tags (up to 256),
+ * we use directly our tag number.
+ */
+#if SYM_CONF_MAX_TASK > (512/4)
+ msgptr[msglen++] = cp->tag;
+#else
+ msgptr[msglen++] = (cp->tag << 1) + 1;
+#endif
+ }
+
+ /*
+ * Build a negotiation message if needed.
+ * (nego_status is filled by sym_prepare_nego())
+ */
+ cp->nego_status = 0;
+ if (tp->tgoal.check_nego && !tp->nego_cp && lp) {
+ msglen += sym_prepare_nego(np, cp, msgptr + msglen);
+ }
+
+ /*
+ * Startqueue
+ */
+ cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
+ cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa));
+
+ /*
+ * select
+ */
+ cp->phys.select.sel_id = cp->target;
+ cp->phys.select.sel_scntl3 = tp->head.wval;
+ cp->phys.select.sel_sxfer = tp->head.sval;
+ cp->phys.select.sel_scntl4 = tp->head.uval;
+
+ /*
+ * message
+ */
+ cp->phys.smsg.addr = cpu_to_scr(CCB_BA(cp, scsi_smsg));
+ cp->phys.smsg.size = cpu_to_scr(msglen);
+
+ /*
+ * status
+ */
+ cp->host_xflags = 0;
+ cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
+ cp->ssss_status = S_ILLEGAL;
+ cp->xerr_status = 0;
+ cp->host_flags = 0;
+ cp->extra_bytes = 0;
+
+ /*
+ * extreme data pointer.
+ * shall be positive, so -1 is lower than lowest.:)
+ */
+ cp->ext_sg = -1;
+ cp->ext_ofs = 0;
+
+ /*
+ * Build the CDB and DATA descriptor block
+ * and start the IO.
+ */
+ return sym_setup_data_and_start(np, cmd, cp);
+}
+
+/*
+ * Reset a SCSI target (all LUNs of this target).
+ */
+int sym_reset_scsi_target(struct sym_hcb *np, int target)
+{
+ struct sym_tcb *tp;
+
+ if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET)
+ return -1;
+
+ tp = &np->target[target];
+ tp->to_reset = 1;
+
+ np->istat_sem = SEM;
+ OUTB(np, nc_istat, SIGP|SEM);
+
+ return 0;
+}
+
+/*
+ * Abort a SCSI IO.
+ */
+static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out)
+{
+ /*
+ * Check that the IO is active.
+ */
+ if (!cp || !cp->host_status || cp->host_status == HS_WAIT)
+ return -1;
+
+ /*
+ * If a previous abort didn't succeed in time,
+ * perform a BUS reset.
+ */
+ if (cp->to_abort) {
+ sym_reset_scsi_bus(np, 1);
+ return 0;
+ }
+
+ /*
+ * Mark the CCB for abort and allow time for.
+ */
+ cp->to_abort = timed_out ? 2 : 1;
+
+ /*
+ * Tell the SCRIPTS processor to stop and synchronize with us.
+ */
+ np->istat_sem = SEM;
+ OUTB(np, nc_istat, SIGP|SEM);
+ return 0;
+}
+
+int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out)
+{
+ struct sym_ccb *cp;
+ SYM_QUEHEAD *qp;
+
+ /*
+ * Look up our CCB control block.
+ */
+ cp = NULL;
+ FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
+ struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
+ if (cp2->cmd == cmd) {
+ cp = cp2;
+ break;
+ }
+ }
+
+ return sym_abort_ccb(np, cp, timed_out);
+}
+
+/*
+ * Complete execution of a SCSI command with extented
+ * error, SCSI status error, or having been auto-sensed.
+ *
+ * The SCRIPTS processor is not running there, so we
+ * can safely access IO registers and remove JOBs from
+ * the START queue.
+ * SCRATCHA is assumed to have been loaded with STARTPOS
+ * before the SCRIPTS called the C code.
+ */
+void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp)
+{
+ struct scsi_device *sdev;
+ struct scsi_cmnd *cmd;
+ struct sym_tcb *tp;
+ struct sym_lcb *lp;
+ int resid;
+ int i;
+
+ /*
+ * Paranoid check. :)
+ */
+ if (!cp || !cp->cmd)
+ return;
+
+ cmd = cp->cmd;
+ sdev = cmd->device;
+ if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
+ dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp,
+ cp->host_status, cp->ssss_status, cp->host_flags);
+ }
+
+ /*
+ * Get target and lun pointers.
+ */
+ tp = &np->target[cp->target];
+ lp = sym_lp(tp, sdev->lun);
+
+ /*
+ * Check for extended errors.
+ */
+ if (cp->xerr_status) {
+ if (sym_verbose)
+ sym_print_xerr(cmd, cp->xerr_status);
+ if (cp->host_status == HS_COMPLETE)
+ cp->host_status = HS_COMP_ERR;
+ }
+
+ /*
+ * Calculate the residual.
+ */
+ resid = sym_compute_residual(np, cp);
+
+ if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */
+ resid = 0; /* throw them away. :) */
+ cp->sv_resid = 0;
+ }
+#ifdef DEBUG_2_0_X
+if (resid)
+ printf("XXXX RESID= %d - 0x%x\n", resid, resid);
+#endif
+
+ /*
+ * Dequeue all queued CCBs for that device
+ * not yet started by SCRIPTS.
+ */
+ i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
+ i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1);
+
+ /*
+ * Restart the SCRIPTS processor.
+ */
+ OUTL_DSP(np, SCRIPTA_BA(np, start));
+
+#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ if (cp->host_status == HS_COMPLETE &&
+ cp->ssss_status == S_QUEUE_FULL) {
+ if (!lp || lp->started_tags - i < 2)
+ goto weirdness;
+ /*
+ * Decrease queue depth as needed.
+ */
+ lp->started_max = lp->started_tags - i - 1;
+ lp->num_sgood = 0;
+
+ if (sym_verbose >= 2) {
+ sym_print_addr(cmd, " queue depth is now %d\n",
+ lp->started_max);
+ }
+
+ /*
+ * Repair the CCB.
+ */
+ cp->host_status = HS_BUSY;
+ cp->ssss_status = S_ILLEGAL;
+
+ /*
+ * Let's requeue it to device.
+ */
+ sym_set_cam_status(cmd, CAM_REQUEUE_REQ);
+ goto finish;
+ }
+weirdness:
+#endif
+ /*
+ * Build result in CAM ccb.
+ */
+ sym_set_cam_result_error(np, cp, resid);
+
+#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
+finish:
+#endif
+ /*
+ * Add this one to the COMP queue.
+ */
+ sym_remque(&cp->link_ccbq);
+ sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
+
+ /*
+ * Complete all those commands with either error
+ * or requeue condition.
+ */
+ sym_flush_comp_queue(np, 0);
+
+#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ /*
+ * Donnot start more than 1 command after an error.
+ */
+ if (lp)
+ sym_start_next_ccbs(np, lp, 1);
+#endif
+}
+
+/*
+ * Complete execution of a successful SCSI command.
+ *
+ * Only successful commands go to the DONE queue,
+ * since we need to have the SCRIPTS processor
+ * stopped on any error condition.
+ * The SCRIPTS processor is running while we are
+ * completing successful commands.
+ */
+void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp)
+{
+ struct sym_tcb *tp;
+ struct sym_lcb *lp;
+ struct scsi_cmnd *cmd;
+ int resid;
+
+ /*
+ * Paranoid check. :)
+ */
+ if (!cp || !cp->cmd)
+ return;
+ assert (cp->host_status == HS_COMPLETE);
+
+ /*
+ * Get user command.
+ */
+ cmd = cp->cmd;
+
+ /*
+ * Get target and lun pointers.
+ */
+ tp = &np->target[cp->target];
+ lp = sym_lp(tp, cp->lun);
+
+ /*
+ * Assume device discovered on first success.
+ */
+ if (!lp)
+ sym_set_bit(tp->lun_map, cp->lun);
+
+ /*
+ * If all data have been transferred, given than no
+ * extended error did occur, there is no residual.
+ */
+ resid = 0;
+ if (cp->phys.head.lastp != sym_goalp(cp))
+ resid = sym_compute_residual(np, cp);
+
+ /*
+ * Wrong transfer residuals may be worse than just always
+ * returning zero. User can disable this feature in
+ * sym53c8xx.h. Residual support is enabled by default.
+ */
+ if (!SYM_SETUP_RESIDUAL_SUPPORT)
+ resid = 0;
+#ifdef DEBUG_2_0_X
+if (resid)
+ printf("XXXX RESID= %d - 0x%x\n", resid, resid);
+#endif
+
+ /*
+ * Build result in CAM ccb.
+ */
+ sym_set_cam_result_ok(cp, cmd, resid);
+
+#ifdef SYM_OPT_SNIFF_INQUIRY
+ /*
+ * On standard INQUIRY response (EVPD and CmDt
+ * not set), sniff out device capabilities.
+ */
+ if (cp->cdb_buf[0] == INQUIRY && !(cp->cdb_buf[1] & 0x3))
+ sym_sniff_inquiry(np, cmd, resid);
+#endif
+
+#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ /*
+ * If max number of started ccbs had been reduced,
+ * increase it if 200 good status received.
+ */
+ if (lp && lp->started_max < lp->started_limit) {
+ ++lp->num_sgood;
+ if (lp->num_sgood >= 200) {
+ lp->num_sgood = 0;
+ ++lp->started_max;
+ if (sym_verbose >= 2) {
+ sym_print_addr(cmd, " queue depth is now %d\n",
+ lp->started_max);
+ }
+ }
+ }
+#endif
+
+ /*
+ * Free our CCB.
+ */
+ sym_free_ccb (np, cp);
+
+#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ /*
+ * Requeue a couple of awaiting scsi commands.
+ */
+ if (lp && !sym_que_empty(&lp->waiting_ccbq))
+ sym_start_next_ccbs(np, lp, 2);
+#endif
+ /*
+ * Complete the command.
+ */
+ sym_xpt_done(np, cmd);
+}
+
+/*
+ * Soft-attach the controller.
+ */
+int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram)
+{
+ struct sym_hcb *np = sym_get_hcb(shost);
+ int i;
+
+ /*
+ * Get some info about the firmware.
+ */
+ np->scripta_sz = fw->a_size;
+ np->scriptb_sz = fw->b_size;
+ np->scriptz_sz = fw->z_size;
+ np->fw_setup = fw->setup;
+ np->fw_patch = fw->patch;
+ np->fw_name = fw->name;
+
+ /*
+ * Save setting of some IO registers, so we will
+ * be able to probe specific implementations.
+ */
+ sym_save_initial_setting (np);
+
+ /*
+ * Reset the chip now, since it has been reported
+ * that SCSI clock calibration may not work properly
+ * if the chip is currently active.
+ */
+ sym_chip_reset(np);
+
+ /*
+ * Prepare controller and devices settings, according
+ * to chip features, user set-up and driver set-up.
+ */
+ sym_prepare_setting(shost, np, nvram);
+
+ /*
+ * Check the PCI clock frequency.
+ * Must be performed after prepare_setting since it destroys
+ * STEST1 that is used to probe for the clock doubler.
+ */
+ i = sym_getpciclock(np);
+ if (i > 37000 && !(np->features & FE_66MHZ))
+ printf("%s: PCI BUS clock seems too high: %u KHz.\n",
+ sym_name(np), i);
+
+ /*
+ * Allocate the start queue.
+ */
+ np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
+ if (!np->squeue)
+ goto attach_failed;
+ np->squeue_ba = vtobus(np->squeue);
+
+ /*
+ * Allocate the done queue.
+ */
+ np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
+ if (!np->dqueue)
+ goto attach_failed;
+ np->dqueue_ba = vtobus(np->dqueue);
+
+ /*
+ * Allocate the target bus address array.
+ */
+ np->targtbl = sym_calloc_dma(256, "TARGTBL");
+ if (!np->targtbl)
+ goto attach_failed;
+ np->targtbl_ba = vtobus(np->targtbl);
+
+ /*
+ * Allocate SCRIPTS areas.
+ */
+ np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
+ np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
+ np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0");
+ if (!np->scripta0 || !np->scriptb0 || !np->scriptz0)
+ goto attach_failed;
+
+ /*
+ * Allocate the array of lists of CCBs hashed by DSA.
+ */
+ np->ccbh = kcalloc(sizeof(struct sym_ccb **), CCB_HASH_SIZE, GFP_KERNEL);
+ if (!np->ccbh)
+ goto attach_failed;
+
+ /*
+ * Initialyze the CCB free and busy queues.
+ */
+ sym_que_init(&np->free_ccbq);
+ sym_que_init(&np->busy_ccbq);
+ sym_que_init(&np->comp_ccbq);
+
+ /*
+ * Initialization for optional handling
+ * of device queueing.
+ */
+#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ sym_que_init(&np->dummy_ccbq);
+#endif
+ /*
+ * Allocate some CCB. We need at least ONE.
+ */
+ if (!sym_alloc_ccb(np))
+ goto attach_failed;
+
+ /*
+ * Calculate BUS addresses where we are going
+ * to load the SCRIPTS.
+ */
+ np->scripta_ba = vtobus(np->scripta0);
+ np->scriptb_ba = vtobus(np->scriptb0);
+ np->scriptz_ba = vtobus(np->scriptz0);
+
+ if (np->ram_ba) {
+ np->scripta_ba = np->ram_ba;
+ if (np->features & FE_RAM8K) {
+ np->ram_ws = 8192;
+ np->scriptb_ba = np->scripta_ba + 4096;
+#if 0 /* May get useful for 64 BIT PCI addressing */
+ np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
+#endif
+ }
+ else
+ np->ram_ws = 4096;
+ }
+
+ /*
+ * Copy scripts to controller instance.
+ */
+ memcpy(np->scripta0, fw->a_base, np->scripta_sz);
+ memcpy(np->scriptb0, fw->b_base, np->scriptb_sz);
+ memcpy(np->scriptz0, fw->z_base, np->scriptz_sz);
+
+ /*
+ * Setup variable parts in scripts and compute
+ * scripts bus addresses used from the C code.
+ */
+ np->fw_setup(np, fw);
+
+ /*
+ * Bind SCRIPTS with physical addresses usable by the
+ * SCRIPTS processor (as seen from the BUS = BUS addresses).
+ */
+ sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
+ sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
+ sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz);
+
+#ifdef SYM_CONF_IARB_SUPPORT
+ /*
+ * If user wants IARB to be set when we win arbitration
+ * and have other jobs, compute the max number of consecutive
+ * settings of IARB hints before we leave devices a chance to
+ * arbitrate for reselection.
+ */
+#ifdef SYM_SETUP_IARB_MAX
+ np->iarb_max = SYM_SETUP_IARB_MAX;
+#else
+ np->iarb_max = 4;
+#endif
+#endif
+
+ /*
+ * Prepare the idle and invalid task actions.
+ */
+ np->idletask.start = cpu_to_scr(SCRIPTA_BA(np, idle));
+ np->idletask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
+ np->idletask_ba = vtobus(&np->idletask);
+
+ np->notask.start = cpu_to_scr(SCRIPTA_BA(np, idle));
+ np->notask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
+ np->notask_ba = vtobus(&np->notask);
+
+ np->bad_itl.start = cpu_to_scr(SCRIPTA_BA(np, idle));
+ np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
+ np->bad_itl_ba = vtobus(&np->bad_itl);
+
+ np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA(np, idle));
+ np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q));
+ np->bad_itlq_ba = vtobus(&np->bad_itlq);
+
+ /*
+ * Allocate and prepare the lun JUMP table that is used
+ * for a target prior the probing of devices (bad lun table).
+ * A private table will be allocated for the target on the
+ * first INQUIRY response received.
+ */
+ np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
+ if (!np->badluntbl)
+ goto attach_failed;
+
+ np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
+ for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */
+ np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
+
+ /*
+ * Prepare the bus address array that contains the bus
+ * address of each target control block.
+ * For now, assume all logical units are wrong. :)
+ */
+ for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
+ np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
+ np->target[i].head.luntbl_sa =
+ cpu_to_scr(vtobus(np->badluntbl));
+ np->target[i].head.lun0_sa =
+ cpu_to_scr(vtobus(&np->badlun_sa));
+ }
+
+ /*
+ * Now check the cache handling of the pci chipset.
+ */
+ if (sym_snooptest (np)) {
+ printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
+ goto attach_failed;
+ }
+
+ /*
+ * Sigh! we are done.
+ */
+ return 0;
+
+attach_failed:
+ return -ENXIO;
+}
+
+/*
+ * Free everything that has been allocated for this device.
+ */
+void sym_hcb_free(struct sym_hcb *np)
+{
+ SYM_QUEHEAD *qp;
+ struct sym_ccb *cp;
+ struct sym_tcb *tp;
+ struct sym_lcb *lp;
+ int target, lun;
+
+ if (np->scriptz0)
+ sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0");
+ if (np->scriptb0)
+ sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
+ if (np->scripta0)
+ sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
+ if (np->squeue)
+ sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
+ if (np->dqueue)
+ sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
+
+ if (np->actccbs) {
+ while ((qp = sym_remque_head(&np->free_ccbq)) != 0) {
+ cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
+ sym_mfree_dma(cp, sizeof(*cp), "CCB");
+ }
+ }
+ kfree(np->ccbh);
+
+ if (np->badluntbl)
+ sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
+
+ for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
+ tp = &np->target[target];
+ for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
+ lp = sym_lp(tp, lun);
+ if (!lp)
+ continue;
+ if (lp->itlq_tbl)
+ sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
+ "ITLQ_TBL");
+ kfree(lp->cb_tags);
+ sym_mfree_dma(lp, sizeof(*lp), "LCB");
+ }
+#if SYM_CONF_MAX_LUN > 1
+ kfree(tp->lunmp);
+#endif
+ }
+ if (np->targtbl)
+ sym_mfree_dma(np->targtbl, 256, "TARGTBL");
+}