diff options
Diffstat (limited to 'arch/alpha/kernel/time.c')
-rw-r--r-- | arch/alpha/kernel/time.c | 591 |
1 files changed, 591 insertions, 0 deletions
diff --git a/arch/alpha/kernel/time.c b/arch/alpha/kernel/time.c new file mode 100644 index 0000000..8226c5c --- /dev/null +++ b/arch/alpha/kernel/time.c @@ -0,0 +1,591 @@ +/* + * linux/arch/alpha/kernel/time.c + * + * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds + * + * This file contains the PC-specific time handling details: + * reading the RTC at bootup, etc.. + * 1994-07-02 Alan Modra + * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime + * 1995-03-26 Markus Kuhn + * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887 + * precision CMOS clock update + * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 + * "A Kernel Model for Precision Timekeeping" by Dave Mills + * 1997-01-09 Adrian Sun + * use interval timer if CONFIG_RTC=y + * 1997-10-29 John Bowman (bowman@math.ualberta.ca) + * fixed tick loss calculation in timer_interrupt + * (round system clock to nearest tick instead of truncating) + * fixed algorithm in time_init for getting time from CMOS clock + * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net) + * fixed algorithm in do_gettimeofday() for calculating the precise time + * from processor cycle counter (now taking lost_ticks into account) + * 2000-08-13 Jan-Benedict Glaw <jbglaw@lug-owl.de> + * Fixed time_init to be aware of epoches != 1900. This prevents + * booting up in 2048 for me;) Code is stolen from rtc.c. + * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com> + * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM + */ +#include <linux/config.h> +#include <linux/errno.h> +#include <linux/module.h> +#include <linux/sched.h> +#include <linux/kernel.h> +#include <linux/param.h> +#include <linux/string.h> +#include <linux/mm.h> +#include <linux/delay.h> +#include <linux/ioport.h> +#include <linux/irq.h> +#include <linux/interrupt.h> +#include <linux/init.h> +#include <linux/bcd.h> +#include <linux/profile.h> + +#include <asm/uaccess.h> +#include <asm/io.h> +#include <asm/hwrpb.h> +#include <asm/8253pit.h> + +#include <linux/mc146818rtc.h> +#include <linux/time.h> +#include <linux/timex.h> + +#include "proto.h" +#include "irq_impl.h" + +u64 jiffies_64 = INITIAL_JIFFIES; + +EXPORT_SYMBOL(jiffies_64); + +extern unsigned long wall_jiffies; /* kernel/timer.c */ + +static int set_rtc_mmss(unsigned long); + +DEFINE_SPINLOCK(rtc_lock); + +#define TICK_SIZE (tick_nsec / 1000) + +/* + * Shift amount by which scaled_ticks_per_cycle is scaled. Shifting + * by 48 gives us 16 bits for HZ while keeping the accuracy good even + * for large CPU clock rates. + */ +#define FIX_SHIFT 48 + +/* lump static variables together for more efficient access: */ +static struct { + /* cycle counter last time it got invoked */ + __u32 last_time; + /* ticks/cycle * 2^48 */ + unsigned long scaled_ticks_per_cycle; + /* last time the CMOS clock got updated */ + time_t last_rtc_update; + /* partial unused tick */ + unsigned long partial_tick; +} state; + +unsigned long est_cycle_freq; + + +static inline __u32 rpcc(void) +{ + __u32 result; + asm volatile ("rpcc %0" : "=r"(result)); + return result; +} + +/* + * Scheduler clock - returns current time in nanosec units. + * + * Copied from ARM code for expediency... ;-} + */ +unsigned long long sched_clock(void) +{ + return (unsigned long long)jiffies * (1000000000 / HZ); +} + + +/* + * timer_interrupt() needs to keep up the real-time clock, + * as well as call the "do_timer()" routine every clocktick + */ +irqreturn_t timer_interrupt(int irq, void *dev, struct pt_regs * regs) +{ + unsigned long delta; + __u32 now; + long nticks; + +#ifndef CONFIG_SMP + /* Not SMP, do kernel PC profiling here. */ + profile_tick(CPU_PROFILING, regs); +#endif + + write_seqlock(&xtime_lock); + + /* + * Calculate how many ticks have passed since the last update, + * including any previous partial leftover. Save any resulting + * fraction for the next pass. + */ + now = rpcc(); + delta = now - state.last_time; + state.last_time = now; + delta = delta * state.scaled_ticks_per_cycle + state.partial_tick; + state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1); + nticks = delta >> FIX_SHIFT; + + while (nticks > 0) { + do_timer(regs); +#ifndef CONFIG_SMP + update_process_times(user_mode(regs)); +#endif + nticks--; + } + + /* + * If we have an externally synchronized Linux clock, then update + * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be + * called as close as possible to 500 ms before the new second starts. + */ + if ((time_status & STA_UNSYNC) == 0 + && xtime.tv_sec > state.last_rtc_update + 660 + && xtime.tv_nsec >= 500000 - ((unsigned) TICK_SIZE) / 2 + && xtime.tv_nsec <= 500000 + ((unsigned) TICK_SIZE) / 2) { + int tmp = set_rtc_mmss(xtime.tv_sec); + state.last_rtc_update = xtime.tv_sec - (tmp ? 600 : 0); + } + + write_sequnlock(&xtime_lock); + return IRQ_HANDLED; +} + +void +common_init_rtc(void) +{ + unsigned char x; + + /* Reset periodic interrupt frequency. */ + x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f; + /* Test includes known working values on various platforms + where 0x26 is wrong; we refuse to change those. */ + if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) { + printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x); + CMOS_WRITE(0x26, RTC_FREQ_SELECT); + } + + /* Turn on periodic interrupts. */ + x = CMOS_READ(RTC_CONTROL); + if (!(x & RTC_PIE)) { + printk("Turning on RTC interrupts.\n"); + x |= RTC_PIE; + x &= ~(RTC_AIE | RTC_UIE); + CMOS_WRITE(x, RTC_CONTROL); + } + (void) CMOS_READ(RTC_INTR_FLAGS); + + outb(0x36, 0x43); /* pit counter 0: system timer */ + outb(0x00, 0x40); + outb(0x00, 0x40); + + outb(0xb6, 0x43); /* pit counter 2: speaker */ + outb(0x31, 0x42); + outb(0x13, 0x42); + + init_rtc_irq(); +} + + +/* Validate a computed cycle counter result against the known bounds for + the given processor core. There's too much brokenness in the way of + timing hardware for any one method to work everywhere. :-( + + Return 0 if the result cannot be trusted, otherwise return the argument. */ + +static unsigned long __init +validate_cc_value(unsigned long cc) +{ + static struct bounds { + unsigned int min, max; + } cpu_hz[] __initdata = { + [EV3_CPU] = { 50000000, 200000000 }, /* guess */ + [EV4_CPU] = { 100000000, 300000000 }, + [LCA4_CPU] = { 100000000, 300000000 }, /* guess */ + [EV45_CPU] = { 200000000, 300000000 }, + [EV5_CPU] = { 250000000, 433000000 }, + [EV56_CPU] = { 333000000, 667000000 }, + [PCA56_CPU] = { 400000000, 600000000 }, /* guess */ + [PCA57_CPU] = { 500000000, 600000000 }, /* guess */ + [EV6_CPU] = { 466000000, 600000000 }, + [EV67_CPU] = { 600000000, 750000000 }, + [EV68AL_CPU] = { 750000000, 940000000 }, + [EV68CB_CPU] = { 1000000000, 1333333333 }, + /* None of the following are shipping as of 2001-11-01. */ + [EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */ + [EV69_CPU] = { 1000000000, 1700000000 }, /* guess */ + [EV7_CPU] = { 800000000, 1400000000 }, /* guess */ + [EV79_CPU] = { 1000000000, 2000000000 }, /* guess */ + }; + + /* Allow for some drift in the crystal. 10MHz is more than enough. */ + const unsigned int deviation = 10000000; + + struct percpu_struct *cpu; + unsigned int index; + + cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset); + index = cpu->type & 0xffffffff; + + /* If index out of bounds, no way to validate. */ + if (index >= sizeof(cpu_hz)/sizeof(cpu_hz[0])) + return cc; + + /* If index contains no data, no way to validate. */ + if (cpu_hz[index].max == 0) + return cc; + + if (cc < cpu_hz[index].min - deviation + || cc > cpu_hz[index].max + deviation) + return 0; + + return cc; +} + + +/* + * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from + * arch/i386/time.c. + */ + +#define CALIBRATE_LATCH 0xffff +#define TIMEOUT_COUNT 0x100000 + +static unsigned long __init +calibrate_cc_with_pit(void) +{ + int cc, count = 0; + + /* Set the Gate high, disable speaker */ + outb((inb(0x61) & ~0x02) | 0x01, 0x61); + + /* + * Now let's take care of CTC channel 2 + * + * Set the Gate high, program CTC channel 2 for mode 0, + * (interrupt on terminal count mode), binary count, + * load 5 * LATCH count, (LSB and MSB) to begin countdown. + */ + outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */ + outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */ + outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */ + + cc = rpcc(); + do { + count++; + } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT); + cc = rpcc() - cc; + + /* Error: ECTCNEVERSET or ECPUTOOFAST. */ + if (count <= 1 || count == TIMEOUT_COUNT) + return 0; + + return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1); +} + +/* The Linux interpretation of the CMOS clock register contents: + When the Update-In-Progress (UIP) flag goes from 1 to 0, the + RTC registers show the second which has precisely just started. + Let's hope other operating systems interpret the RTC the same way. */ + +static unsigned long __init +rpcc_after_update_in_progress(void) +{ + do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)); + do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP); + + return rpcc(); +} + +void __init +time_init(void) +{ + unsigned int year, mon, day, hour, min, sec, cc1, cc2, epoch; + unsigned long cycle_freq, tolerance; + long diff; + + /* Calibrate CPU clock -- attempt #1. */ + if (!est_cycle_freq) + est_cycle_freq = validate_cc_value(calibrate_cc_with_pit()); + + cc1 = rpcc_after_update_in_progress(); + + /* Calibrate CPU clock -- attempt #2. */ + if (!est_cycle_freq) { + cc2 = rpcc_after_update_in_progress(); + est_cycle_freq = validate_cc_value(cc2 - cc1); + cc1 = cc2; + } + + cycle_freq = hwrpb->cycle_freq; + if (est_cycle_freq) { + /* If the given value is within 250 PPM of what we calculated, + accept it. Otherwise, use what we found. */ + tolerance = cycle_freq / 4000; + diff = cycle_freq - est_cycle_freq; + if (diff < 0) + diff = -diff; + if ((unsigned long)diff > tolerance) { + cycle_freq = est_cycle_freq; + printk("HWRPB cycle frequency bogus. " + "Estimated %lu Hz\n", cycle_freq); + } else { + est_cycle_freq = 0; + } + } else if (! validate_cc_value (cycle_freq)) { + printk("HWRPB cycle frequency bogus, " + "and unable to estimate a proper value!\n"); + } + + /* From John Bowman <bowman@math.ualberta.ca>: allow the values + to settle, as the Update-In-Progress bit going low isn't good + enough on some hardware. 2ms is our guess; we haven't found + bogomips yet, but this is close on a 500Mhz box. */ + __delay(1000000); + + sec = CMOS_READ(RTC_SECONDS); + min = CMOS_READ(RTC_MINUTES); + hour = CMOS_READ(RTC_HOURS); + day = CMOS_READ(RTC_DAY_OF_MONTH); + mon = CMOS_READ(RTC_MONTH); + year = CMOS_READ(RTC_YEAR); + + if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { + BCD_TO_BIN(sec); + BCD_TO_BIN(min); + BCD_TO_BIN(hour); + BCD_TO_BIN(day); + BCD_TO_BIN(mon); + BCD_TO_BIN(year); + } + + /* PC-like is standard; used for year >= 70 */ + epoch = 1900; + if (year < 20) + epoch = 2000; + else if (year >= 20 && year < 48) + /* NT epoch */ + epoch = 1980; + else if (year >= 48 && year < 70) + /* Digital UNIX epoch */ + epoch = 1952; + + printk(KERN_INFO "Using epoch = %d\n", epoch); + + if ((year += epoch) < 1970) + year += 100; + + xtime.tv_sec = mktime(year, mon, day, hour, min, sec); + xtime.tv_nsec = 0; + + wall_to_monotonic.tv_sec -= xtime.tv_sec; + wall_to_monotonic.tv_nsec = 0; + + if (HZ > (1<<16)) { + extern void __you_loose (void); + __you_loose(); + } + + state.last_time = cc1; + state.scaled_ticks_per_cycle + = ((unsigned long) HZ << FIX_SHIFT) / cycle_freq; + state.last_rtc_update = 0; + state.partial_tick = 0L; + + /* Startup the timer source. */ + alpha_mv.init_rtc(); +} + +/* + * Use the cycle counter to estimate an displacement from the last time + * tick. Unfortunately the Alpha designers made only the low 32-bits of + * the cycle counter active, so we overflow on 8.2 seconds on a 500MHz + * part. So we can't do the "find absolute time in terms of cycles" thing + * that the other ports do. + */ +void +do_gettimeofday(struct timeval *tv) +{ + unsigned long flags; + unsigned long sec, usec, lost, seq; + unsigned long delta_cycles, delta_usec, partial_tick; + + do { + seq = read_seqbegin_irqsave(&xtime_lock, flags); + + delta_cycles = rpcc() - state.last_time; + sec = xtime.tv_sec; + usec = (xtime.tv_nsec / 1000); + partial_tick = state.partial_tick; + lost = jiffies - wall_jiffies; + + } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); + +#ifdef CONFIG_SMP + /* Until and unless we figure out how to get cpu cycle counters + in sync and keep them there, we can't use the rpcc tricks. */ + delta_usec = lost * (1000000 / HZ); +#else + /* + * usec = cycles * ticks_per_cycle * 2**48 * 1e6 / (2**48 * ticks) + * = cycles * (s_t_p_c) * 1e6 / (2**48 * ticks) + * = cycles * (s_t_p_c) * 15625 / (2**42 * ticks) + * + * which, given a 600MHz cycle and a 1024Hz tick, has a + * dynamic range of about 1.7e17, which is less than the + * 1.8e19 in an unsigned long, so we are safe from overflow. + * + * Round, but with .5 up always, since .5 to even is harder + * with no clear gain. + */ + + delta_usec = (delta_cycles * state.scaled_ticks_per_cycle + + partial_tick + + (lost << FIX_SHIFT)) * 15625; + delta_usec = ((delta_usec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2; +#endif + + usec += delta_usec; + if (usec >= 1000000) { + sec += 1; + usec -= 1000000; + } + + tv->tv_sec = sec; + tv->tv_usec = usec; +} + +EXPORT_SYMBOL(do_gettimeofday); + +int +do_settimeofday(struct timespec *tv) +{ + time_t wtm_sec, sec = tv->tv_sec; + long wtm_nsec, nsec = tv->tv_nsec; + unsigned long delta_nsec; + + if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) + return -EINVAL; + + write_seqlock_irq(&xtime_lock); + + /* The offset that is added into time in do_gettimeofday above + must be subtracted out here to keep a coherent view of the + time. Without this, a full-tick error is possible. */ + +#ifdef CONFIG_SMP + delta_nsec = (jiffies - wall_jiffies) * (NSEC_PER_SEC / HZ); +#else + delta_nsec = rpcc() - state.last_time; + delta_nsec = (delta_nsec * state.scaled_ticks_per_cycle + + state.partial_tick + + ((jiffies - wall_jiffies) << FIX_SHIFT)) * 15625; + delta_nsec = ((delta_nsec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2; + delta_nsec *= 1000; +#endif + + nsec -= delta_nsec; + + wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); + wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); + + set_normalized_timespec(&xtime, sec, nsec); + set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); + + time_adjust = 0; /* stop active adjtime() */ + time_status |= STA_UNSYNC; + time_maxerror = NTP_PHASE_LIMIT; + time_esterror = NTP_PHASE_LIMIT; + + write_sequnlock_irq(&xtime_lock); + clock_was_set(); + return 0; +} + +EXPORT_SYMBOL(do_settimeofday); + + +/* + * In order to set the CMOS clock precisely, set_rtc_mmss has to be + * called 500 ms after the second nowtime has started, because when + * nowtime is written into the registers of the CMOS clock, it will + * jump to the next second precisely 500 ms later. Check the Motorola + * MC146818A or Dallas DS12887 data sheet for details. + * + * BUG: This routine does not handle hour overflow properly; it just + * sets the minutes. Usually you won't notice until after reboot! + */ + + +static int +set_rtc_mmss(unsigned long nowtime) +{ + int retval = 0; + int real_seconds, real_minutes, cmos_minutes; + unsigned char save_control, save_freq_select; + + /* irq are locally disabled here */ + spin_lock(&rtc_lock); + /* Tell the clock it's being set */ + save_control = CMOS_READ(RTC_CONTROL); + CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); + + /* Stop and reset prescaler */ + save_freq_select = CMOS_READ(RTC_FREQ_SELECT); + CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); + + cmos_minutes = CMOS_READ(RTC_MINUTES); + if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) + BCD_TO_BIN(cmos_minutes); + + /* + * since we're only adjusting minutes and seconds, + * don't interfere with hour overflow. This avoids + * messing with unknown time zones but requires your + * RTC not to be off by more than 15 minutes + */ + real_seconds = nowtime % 60; + real_minutes = nowtime / 60; + if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) { + /* correct for half hour time zone */ + real_minutes += 30; + } + real_minutes %= 60; + + if (abs(real_minutes - cmos_minutes) < 30) { + if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { + BIN_TO_BCD(real_seconds); + BIN_TO_BCD(real_minutes); + } + CMOS_WRITE(real_seconds,RTC_SECONDS); + CMOS_WRITE(real_minutes,RTC_MINUTES); + } else { + printk(KERN_WARNING + "set_rtc_mmss: can't update from %d to %d\n", + cmos_minutes, real_minutes); + retval = -1; + } + + /* The following flags have to be released exactly in this order, + * otherwise the DS12887 (popular MC146818A clone with integrated + * battery and quartz) will not reset the oscillator and will not + * update precisely 500 ms later. You won't find this mentioned in + * the Dallas Semiconductor data sheets, but who believes data + * sheets anyway ... -- Markus Kuhn + */ + CMOS_WRITE(save_control, RTC_CONTROL); + CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); + spin_unlock(&rtc_lock); + + return retval; +} |