1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
|
/*
* Copyright (c) 2008-2009 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "hw.h"
#include "hw-ops.h"
/* Common calibration code */
/* We can tune this as we go by monitoring really low values */
#define ATH9K_NF_TOO_LOW -60
static int16_t ath9k_hw_get_nf_hist_mid(int16_t *nfCalBuffer)
{
int16_t nfval;
int16_t sort[ATH9K_NF_CAL_HIST_MAX];
int i, j;
for (i = 0; i < ATH9K_NF_CAL_HIST_MAX; i++)
sort[i] = nfCalBuffer[i];
for (i = 0; i < ATH9K_NF_CAL_HIST_MAX - 1; i++) {
for (j = 1; j < ATH9K_NF_CAL_HIST_MAX - i; j++) {
if (sort[j] > sort[j - 1]) {
nfval = sort[j];
sort[j] = sort[j - 1];
sort[j - 1] = nfval;
}
}
}
nfval = sort[(ATH9K_NF_CAL_HIST_MAX - 1) >> 1];
return nfval;
}
static void ath9k_hw_update_nfcal_hist_buffer(struct ath9k_nfcal_hist *h,
int16_t *nfarray)
{
int i;
for (i = 0; i < NUM_NF_READINGS; i++) {
h[i].nfCalBuffer[h[i].currIndex] = nfarray[i];
if (++h[i].currIndex >= ATH9K_NF_CAL_HIST_MAX)
h[i].currIndex = 0;
if (h[i].invalidNFcount > 0) {
h[i].invalidNFcount--;
h[i].privNF = nfarray[i];
} else {
h[i].privNF =
ath9k_hw_get_nf_hist_mid(h[i].nfCalBuffer);
}
}
}
static bool ath9k_hw_get_nf_thresh(struct ath_hw *ah,
enum ieee80211_band band,
int16_t *nft)
{
switch (band) {
case IEEE80211_BAND_5GHZ:
*nft = (int8_t)ah->eep_ops->get_eeprom(ah, EEP_NFTHRESH_5);
break;
case IEEE80211_BAND_2GHZ:
*nft = (int8_t)ah->eep_ops->get_eeprom(ah, EEP_NFTHRESH_2);
break;
default:
BUG_ON(1);
return false;
}
return true;
}
void ath9k_hw_reset_calibration(struct ath_hw *ah,
struct ath9k_cal_list *currCal)
{
int i;
ath9k_hw_setup_calibration(ah, currCal);
currCal->calState = CAL_RUNNING;
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
ah->meas0.sign[i] = 0;
ah->meas1.sign[i] = 0;
ah->meas2.sign[i] = 0;
ah->meas3.sign[i] = 0;
}
ah->cal_samples = 0;
}
static s16 ath9k_hw_get_default_nf(struct ath_hw *ah,
struct ath9k_channel *chan)
{
struct ath_nf_limits *limit;
if (!chan || IS_CHAN_2GHZ(chan))
limit = &ah->nf_2g;
else
limit = &ah->nf_5g;
return limit->nominal;
}
/* This is done for the currently configured channel */
bool ath9k_hw_reset_calvalid(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
struct ieee80211_conf *conf = &common->hw->conf;
struct ath9k_cal_list *currCal = ah->cal_list_curr;
if (!ah->caldata)
return true;
if (!AR_SREV_9100(ah) && !AR_SREV_9160_10_OR_LATER(ah))
return true;
if (currCal == NULL)
return true;
if (currCal->calState != CAL_DONE) {
ath_print(common, ATH_DBG_CALIBRATE,
"Calibration state incorrect, %d\n",
currCal->calState);
return true;
}
if (!ath9k_hw_iscal_supported(ah, currCal->calData->calType))
return true;
ath_print(common, ATH_DBG_CALIBRATE,
"Resetting Cal %d state for channel %u\n",
currCal->calData->calType, conf->channel->center_freq);
ah->caldata->CalValid &= ~currCal->calData->calType;
currCal->calState = CAL_WAITING;
return false;
}
EXPORT_SYMBOL(ath9k_hw_reset_calvalid);
void ath9k_hw_start_nfcal(struct ath_hw *ah, bool update)
{
if (ah->caldata)
ah->caldata->nfcal_pending = true;
REG_SET_BIT(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_ENABLE_NF);
if (update)
REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
else
REG_SET_BIT(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
}
void ath9k_hw_loadnf(struct ath_hw *ah, struct ath9k_channel *chan)
{
struct ath9k_nfcal_hist *h = NULL;
unsigned i, j;
int32_t val;
u8 chainmask = (ah->rxchainmask << 3) | ah->rxchainmask;
struct ath_common *common = ath9k_hw_common(ah);
s16 default_nf = ath9k_hw_get_default_nf(ah, chan);
if (ah->caldata)
h = ah->caldata->nfCalHist;
for (i = 0; i < NUM_NF_READINGS; i++) {
if (chainmask & (1 << i)) {
s16 nfval;
if (h)
nfval = h[i].privNF;
else
nfval = default_nf;
val = REG_READ(ah, ah->nf_regs[i]);
val &= 0xFFFFFE00;
val |= (((u32) nfval << 1) & 0x1ff);
REG_WRITE(ah, ah->nf_regs[i], val);
}
}
/*
* Load software filtered NF value into baseband internal minCCApwr
* variable.
*/
REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_ENABLE_NF);
REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
/*
* Wait for load to complete, should be fast, a few 10s of us.
* The max delay was changed from an original 250us to 10000us
* since 250us often results in NF load timeout and causes deaf
* condition during stress testing 12/12/2009
*/
for (j = 0; j < 1000; j++) {
if ((REG_READ(ah, AR_PHY_AGC_CONTROL) &
AR_PHY_AGC_CONTROL_NF) == 0)
break;
udelay(10);
}
/*
* We timed out waiting for the noisefloor to load, probably due to an
* in-progress rx. Simply return here and allow the load plenty of time
* to complete before the next calibration interval. We need to avoid
* trying to load -50 (which happens below) while the previous load is
* still in progress as this can cause rx deafness. Instead by returning
* here, the baseband nf cal will just be capped by our present
* noisefloor until the next calibration timer.
*/
if (j == 1000) {
ath_print(common, ATH_DBG_ANY, "Timeout while waiting for nf "
"to load: AR_PHY_AGC_CONTROL=0x%x\n",
REG_READ(ah, AR_PHY_AGC_CONTROL));
return;
}
/*
* Restore maxCCAPower register parameter again so that we're not capped
* by the median we just loaded. This will be initial (and max) value
* of next noise floor calibration the baseband does.
*/
ENABLE_REGWRITE_BUFFER(ah);
for (i = 0; i < NUM_NF_READINGS; i++) {
if (chainmask & (1 << i)) {
val = REG_READ(ah, ah->nf_regs[i]);
val &= 0xFFFFFE00;
val |= (((u32) (-50) << 1) & 0x1ff);
REG_WRITE(ah, ah->nf_regs[i], val);
}
}
REGWRITE_BUFFER_FLUSH(ah);
DISABLE_REGWRITE_BUFFER(ah);
}
static void ath9k_hw_nf_sanitize(struct ath_hw *ah, s16 *nf)
{
struct ath_common *common = ath9k_hw_common(ah);
struct ath_nf_limits *limit;
int i;
if (IS_CHAN_2GHZ(ah->curchan))
limit = &ah->nf_2g;
else
limit = &ah->nf_5g;
for (i = 0; i < NUM_NF_READINGS; i++) {
if (!nf[i])
continue;
ath_print(common, ATH_DBG_CALIBRATE,
"NF calibrated [%s] [chain %d] is %d\n",
(i >= 3 ? "ext" : "ctl"), i % 3, nf[i]);
if (nf[i] > limit->max) {
ath_print(common, ATH_DBG_CALIBRATE,
"NF[%d] (%d) > MAX (%d), correcting to MAX",
i, nf[i], limit->max);
nf[i] = limit->max;
} else if (nf[i] < limit->min) {
ath_print(common, ATH_DBG_CALIBRATE,
"NF[%d] (%d) < MIN (%d), correcting to NOM",
i, nf[i], limit->min);
nf[i] = limit->nominal;
}
}
}
bool ath9k_hw_getnf(struct ath_hw *ah, struct ath9k_channel *chan)
{
struct ath_common *common = ath9k_hw_common(ah);
int16_t nf, nfThresh;
int16_t nfarray[NUM_NF_READINGS] = { 0 };
struct ath9k_nfcal_hist *h;
struct ieee80211_channel *c = chan->chan;
struct ath9k_hw_cal_data *caldata = ah->caldata;
if (!caldata)
return false;
chan->channelFlags &= (~CHANNEL_CW_INT);
if (REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
ath_print(common, ATH_DBG_CALIBRATE,
"NF did not complete in calibration window\n");
nf = 0;
caldata->rawNoiseFloor = nf;
return false;
} else {
ath9k_hw_do_getnf(ah, nfarray);
ath9k_hw_nf_sanitize(ah, nfarray);
nf = nfarray[0];
if (ath9k_hw_get_nf_thresh(ah, c->band, &nfThresh)
&& nf > nfThresh) {
ath_print(common, ATH_DBG_CALIBRATE,
"noise floor failed detected; "
"detected %d, threshold %d\n",
nf, nfThresh);
chan->channelFlags |= CHANNEL_CW_INT;
}
}
h = caldata->nfCalHist;
caldata->nfcal_pending = false;
ath9k_hw_update_nfcal_hist_buffer(h, nfarray);
caldata->rawNoiseFloor = h[0].privNF;
return true;
}
void ath9k_init_nfcal_hist_buffer(struct ath_hw *ah,
struct ath9k_channel *chan)
{
struct ath9k_nfcal_hist *h;
s16 default_nf;
int i, j;
if (!ah->caldata)
return;
h = ah->caldata->nfCalHist;
default_nf = ath9k_hw_get_default_nf(ah, chan);
for (i = 0; i < NUM_NF_READINGS; i++) {
h[i].currIndex = 0;
h[i].privNF = default_nf;
h[i].invalidNFcount = AR_PHY_CCA_FILTERWINDOW_LENGTH;
for (j = 0; j < ATH9K_NF_CAL_HIST_MAX; j++) {
h[i].nfCalBuffer[j] = default_nf;
}
}
}
s16 ath9k_hw_getchan_noise(struct ath_hw *ah, struct ath9k_channel *chan)
{
if (!ah->caldata || !ah->caldata->rawNoiseFloor)
return ath9k_hw_get_default_nf(ah, chan);
return ah->caldata->rawNoiseFloor;
}
EXPORT_SYMBOL(ath9k_hw_getchan_noise);
|