aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/scsi/cpqfcTSi2c.c
blob: b38a6a9a55a3d294298f78a9d0e7676fc2f2d2a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
/* Copyright(c) 2000, Compaq Computer Corporation 
 * Fibre Channel Host Bus Adapter 
 * 64-bit, 66MHz PCI 
 * Originally developed and tested on:
 * (front): [chip] Tachyon TS HPFC-5166A/1.2  L2C1090 ...
 *          SP# P225CXCBFIEL6T, Rev XC
 *          SP# 161290-001, Rev XD
 * (back): Board No. 010008-001 A/W Rev X5, FAB REV X5
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 2, or (at your option) any
 * later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * Written by Don Zimmerman
*/
// These functions control the NVRAM I2C hardware on 
// non-intelligent Fibre Host Adapters.
// The primary purpose is to read the HBA's NVRAM to get adapter's 
// manufactured WWN to copy into Tachyon chip registers
// Orignal source author unknown

#include <linux/types.h>
enum boolean { FALSE, TRUE } ;


#ifndef UCHAR
typedef __u8 UCHAR;
#endif
#ifndef BOOLEAN
typedef __u8 BOOLEAN;
#endif
#ifndef USHORT
typedef __u16 USHORT;
#endif
#ifndef ULONG
typedef __u32 ULONG;
#endif


#include <linux/string.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <asm/io.h>  // struct pt_regs for IRQ handler & Port I/O

#include "cpqfcTSchip.h"

static void tl_i2c_tx_byte( void* GPIOout, UCHAR data );
/*static BOOLEAN tl_write_i2c_page_portion( void* GPIOin, void* GPIOout,
  USHORT startOffset,  // e.g. 0x2f for WWN start
  USHORT count,
  UCHAR *buf );
*/

//
// Tachlite GPIO2, GPIO3 (I2C) DEFINES
// The NVRAM chip NM24C03 defines SCL (serial clock) and SDA (serial data)
// GPIO2 drives SDA, and GPIO3 drives SCL
// 
// Since Tachlite inverts the state of the GPIO 0-3 outputs, SET writes 0
// and clear writes 1. The input lines (read in TL status) is NOT inverted
// This really helps confuse the code and debugging.

#define SET_DATA_HI  0x0
#define SET_DATA_LO  0x8
#define SET_CLOCK_HI 0x0
#define SET_CLOCK_LO 0x4

#define SENSE_DATA_HI  0x8
#define SENSE_DATA_LO  0x0
#define SENSE_CLOCK_HI 0x4
#define SENSE_CLOCK_LO 0x0

#define SLAVE_READ_ADDRESS    0xA1
#define SLAVE_WRITE_ADDRESS   0xA0
					      

static void i2c_delay(ULONG mstime);
static void tl_i2c_clock_pulse( UCHAR , void* GPIOout);
static UCHAR tl_read_i2c_data( void* );


//-----------------------------------------------------------------------------
//
//      Name:   I2C_RX_ACK
//
//      This routine receives an acknowledge over the I2C bus.
//
//-----------------------------------------------------------------------------
static unsigned short tl_i2c_rx_ack( void* GPIOin, void* GPIOout )
{
  unsigned long value;

	// do clock pulse, let data line float high
  tl_i2c_clock_pulse( SET_DATA_HI, GPIOout );

	// slave must drive data low for acknowledge
  value = tl_read_i2c_data( GPIOin);
  if (value & SENSE_DATA_HI )
    return( FALSE );

  return( TRUE );
}
//-----------------------------------------------------------------------------
//
//      Name:   READ_I2C_REG
//
//      This routine reads the I2C control register using the global
//      IO address stored in gpioreg.
//
//-----------------------------------------------------------------------------
static UCHAR tl_read_i2c_data( void* gpioreg )
{
  return( (UCHAR)(readl( gpioreg ) & 0x08L) ); // GPIO3
}
//-----------------------------------------------------------------------------
//
//      Name:   WRITE_I2C_REG
//
//      This routine writes the I2C control register using the global
//      IO address stored in gpioreg.
//      In Tachlite, we don't want to modify other bits in TL Control reg.
//
//-----------------------------------------------------------------------------
static void tl_write_i2c_reg( void* gpioregOUT, UCHAR value )
{
  ULONG  temp;

	// First read the register and clear out the old bits
  temp = readl( gpioregOUT ) & 0xfffffff3L;

	// Now or in the new data and send it back out
  writel( temp | value, gpioregOUT);
}
//-----------------------------------------------------------------------------
//
//      Name:   I2C_TX_START
//
//      This routine transmits a start condition over the I2C bus.
//      1. Set SCL (clock, GPIO2) HIGH, set SDA (data, GPIO3) HIGH,
//      wait 5us to stabilize.
//      2. With SCL still HIGH, drive SDA low.  The low transition marks
//         the start condition to NM24Cxx (the chip)
//      NOTE! In TL control reg., output 1 means chip sees LOW
//
//-----------------------------------------------------------------------------
static unsigned short tl_i2c_tx_start( void* GPIOin, void* GPIOout )
{
  unsigned short i;
  ULONG value;

  if ( !(tl_read_i2c_data(GPIOin) & SENSE_DATA_HI))
  {
    // start with clock high, let data float high
    tl_write_i2c_reg(  GPIOout, SET_DATA_HI | SET_CLOCK_HI );

    // keep sending clock pulses if slave is driving data line
    for (i = 0; i < 10; i++)
    {
      tl_i2c_clock_pulse( SET_DATA_HI, GPIOout );

      if ( tl_read_i2c_data(GPIOin) & SENSE_DATA_HI )
	break;
    }

		// if he's still driving data low after 10 clocks, abort
    value = tl_read_i2c_data( GPIOin ); // read status
    if (!(value & 0x08) )
      return( FALSE );
  }


	// To START, bring data low while clock high
  tl_write_i2c_reg(  GPIOout, SET_CLOCK_HI | SET_DATA_LO );

  i2c_delay(0);

  return( TRUE );                           // TX start successful
}
//-----------------------------------------------------------------------------
//
//      Name:   I2C_TX_STOP
//
//      This routine transmits a stop condition over the I2C bus.
//
//-----------------------------------------------------------------------------

static unsigned short tl_i2c_tx_stop( void* GPIOin, void* GPIOout )
{
  int i;

  for (i = 0; i < 10; i++) 
  {
  // Send clock pulse, drive data line low
    tl_i2c_clock_pulse( SET_DATA_LO, GPIOout );

  // To STOP, bring data high while clock high
    tl_write_i2c_reg(  GPIOout, SET_DATA_HI | SET_CLOCK_HI );

  // Give the data line time to float high
    i2c_delay(0);

  // If slave is driving data line low, there's a problem; retry
    if ( tl_read_i2c_data(GPIOin) & SENSE_DATA_HI )
      return( TRUE );  // TX STOP successful!
  }

  return( FALSE );                      // error
}
//-----------------------------------------------------------------------------
//
//      Name:   I2C_TX_uchar
//
//      This routine transmits a byte across the I2C bus.
//
//-----------------------------------------------------------------------------
static void tl_i2c_tx_byte( void* GPIOout, UCHAR data )
{
  UCHAR bit;

  for (bit = 0x80; bit; bit >>= 1)
  {
    if( data & bit )
      tl_i2c_clock_pulse( (UCHAR)SET_DATA_HI, GPIOout);
    else
      tl_i2c_clock_pulse( (UCHAR)SET_DATA_LO, GPIOout);
  }  
}
//-----------------------------------------------------------------------------
//
//      Name:   I2C_RX_uchar
//
//      This routine receives a byte across the I2C bus.
//
//-----------------------------------------------------------------------------
static UCHAR tl_i2c_rx_byte( void* GPIOin, void* GPIOout )
{
  UCHAR bit;
  UCHAR data = 0;


  for (bit = 0x80; bit; bit >>= 1) {
    // do clock pulse, let data line float high
    tl_i2c_clock_pulse( SET_DATA_HI, GPIOout );

    // read data line
    if ( tl_read_i2c_data( GPIOin) & 0x08 )
      data |= bit;
  }

  return (data);
}
//*****************************************************************************
//*****************************************************************************
// Function:   read_i2c_nvram
// Arguments:  UCHAR count     number of bytes to read
//             UCHAR *buf      area to store the bytes read
// Returns:    0 - failed
//             1 - success
//*****************************************************************************
//*****************************************************************************
unsigned long cpqfcTS_ReadNVRAM( void* GPIOin, void* GPIOout , USHORT count,
	UCHAR *buf )
{
  unsigned short i;

  if( !( tl_i2c_tx_start(GPIOin, GPIOout) ))
    return FALSE;

  // Select the NVRAM for "dummy" write, to set the address
  tl_i2c_tx_byte( GPIOout , SLAVE_WRITE_ADDRESS );
  if ( !tl_i2c_rx_ack(GPIOin, GPIOout ) )
    return( FALSE );

  // Now send the address where we want to start reading  
  tl_i2c_tx_byte( GPIOout , 0 );
  if ( !tl_i2c_rx_ack(GPIOin, GPIOout ) )
    return( FALSE );

  // Send a repeated start condition and select the
  //  slave for reading now.
  if( tl_i2c_tx_start(GPIOin, GPIOout) )
    tl_i2c_tx_byte( GPIOout, SLAVE_READ_ADDRESS );

  if ( !tl_i2c_rx_ack(GPIOin, GPIOout) )
    return( FALSE );

  // this loop will now read out the data and store it
  //  in the buffer pointed to by buf
  for ( i=0; i<count; i++) 
  {
    *buf++ = tl_i2c_rx_byte(GPIOin, GPIOout);

    // Send ACK by holding data line low for 1 clock
    if ( i < (count-1) )
      tl_i2c_clock_pulse( 0x08, GPIOout );
    else {
	// Don't send ack for final byte
      tl_i2c_clock_pulse( SET_DATA_HI, GPIOout );
    }
  }

  tl_i2c_tx_stop(GPIOin, GPIOout);

  return( TRUE );
}

//****************************************************************
//
//
//
// routines to set and clear the data and clock bits
//
//
//
//****************************************************************

static void tl_set_clock(void* gpioreg)
{
  ULONG ret_val;

  ret_val = readl( gpioreg );
  ret_val &= 0xffffffFBL;  // clear GPIO2 (SCL)
  writel( ret_val, gpioreg);
}

static void tl_clr_clock(void* gpioreg)
{
  ULONG ret_val;

  ret_val = readl( gpioreg );
  ret_val |= SET_CLOCK_LO;
  writel( ret_val, gpioreg);
}

//*****************************************************************
//
//
// This routine will advance the clock by one period
//
//
//*****************************************************************
static void tl_i2c_clock_pulse( UCHAR value, void* GPIOout  )
{
  ULONG ret_val;

  // clear the clock bit
  tl_clr_clock( GPIOout );

  i2c_delay(0);


  // read the port to preserve non-I2C bits
  ret_val = readl( GPIOout );

  // clear the data & clock bits
  ret_val &= 0xFFFFFFf3;

  // write the value passed in...
  // data can only change while clock is LOW!
  ret_val |= value;           // the data
  ret_val |= SET_CLOCK_LO;    // the clock
  writel( ret_val, GPIOout );

  i2c_delay(0);


  //set clock bit
  tl_set_clock( GPIOout);
}




//*****************************************************************
//
//
// This routine returns the 64-bit WWN
//
//
//*****************************************************************
int cpqfcTS_GetNVRAM_data( UCHAR *wwnbuf, UCHAR *buf )
{
  ULONG len;
  ULONG sub_len;
  ULONG ptr_inc;
  ULONG i;
  ULONG j;
  UCHAR *data_ptr;
  UCHAR  z;
  UCHAR  name;
  UCHAR  sub_name;
  UCHAR  done;
  int iReturn=0;  // def. 0 offset is failure to find WWN field
  

	  
  data_ptr = (UCHAR *)buf;

  done = FALSE;
  i = 0;

  while ( (i < 128) && (!done) ) 
  {
    z = data_ptr[i];\
    if ( !(z & 0x80) )  
    {	
      len  = 1 + (z & 0x07);

      name = (z & 0x78) >> 3;
      if (name == 0x0F)
        done = TRUE;
    }
    else 
    {
      name = z & 0x7F;
      len  = 3 + data_ptr[i+1] + (data_ptr[i+2] << 8);
           
      switch (name) 
      {
      case 0x0D:
	//
	  j = i + 3;
	  //
	  if ( data_ptr[j] == 0x3b ) {
	    len = 6;
	    break;
	  }

	  while ( j<(i+len) ) {
	    sub_name = (data_ptr[j] & 0x3f);
	    sub_len  = data_ptr[j+1] + 
	               (data_ptr[j+2] << 8);
            ptr_inc  = sub_len + 3; 
	    switch (sub_name) 
	    {
	    case 0x3C:
              memcpy( wwnbuf, &data_ptr[j+3], 8);
              iReturn = j+3;
              break;
            default:
              break;
	    }
	    j += ptr_inc;
          }
	  break;
        default:
	  break;
      }  
    }  
  //
    i += len;
  }  // end while 
  return iReturn;
}





// define a short 5 micro sec delay, and longer (ms) delay

static void i2c_delay(ULONG mstime)
{
  ULONG i;
  
// NOTE: we only expect to use these delays when reading
// our adapter's NVRAM, which happens only during adapter reset.
// Delay technique from "Linux Device Drivers", A. Rubini 
// (1st Ed.) pg 137.

//  printk(" delay %lx  ", mstime);
  if( mstime ) // ms delay?
  {
    // delay technique
    for( i=0; i < mstime; i++)
      udelay(1000); // 1ms per loop
	
  }
  else  // 5 micro sec delay
  
    udelay( 5 ); // micro secs
  
//  printk("done\n");
}