aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/power/main.c
blob: 9c54ff7ec8ccb849e2efd2818bc3c527ddbcc866 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
/*
 * kernel/power/main.c - PM subsystem core functionality.
 *
 * Copyright (c) 2003 Patrick Mochel
 * Copyright (c) 2003 Open Source Development Lab
 * 
 * This file is released under the GPLv2
 *
 */

#include <linux/kobject.h>
#include <linux/string.h>
#include <linux/resume-trace.h>
#include <linux/workqueue.h>

#if defined(CONFIG_CPU_FREQ) && defined(CONFIG_ARCH_EXYNOS4)
#define CONFIG_DVFS_LIMIT
#endif

#if defined(CONFIG_CPU_EXYNOS4210)
#define CONFIG_GPU_LOCK
#define CONFIG_ROTATION_BOOSTER_SUPPORT
#endif

#ifdef CONFIG_DVFS_LIMIT
#include <linux/cpufreq.h>
#include <mach/cpufreq.h>
#endif

#ifdef CONFIG_GPU_LOCK
#include <mach/gpufreq.h>
#endif

#if defined(CONFIG_CPU_EXYNOS4412) && defined(CONFIG_VIDEO_MALI400MP) \
		&& defined(CONFIG_VIDEO_MALI400MP_DVFS)
#define CONFIG_PEGASUS_GPU_LOCK
extern int mali_dvfs_bottom_lock_push(int lock_step);
extern int mali_dvfs_bottom_lock_pop(void);
#endif

#include "power.h"

DEFINE_MUTEX(pm_mutex);

#ifdef CONFIG_PM_SLEEP

/* Routines for PM-transition notifications */

static BLOCKING_NOTIFIER_HEAD(pm_chain_head);

int register_pm_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&pm_chain_head, nb);
}
EXPORT_SYMBOL_GPL(register_pm_notifier);

int unregister_pm_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&pm_chain_head, nb);
}
EXPORT_SYMBOL_GPL(unregister_pm_notifier);

int pm_notifier_call_chain(unsigned long val)
{
	return (blocking_notifier_call_chain(&pm_chain_head, val, NULL)
			== NOTIFY_BAD) ? -EINVAL : 0;
}

/* If set, devices may be suspended and resumed asynchronously. */
int pm_async_enabled = 1;

static ssize_t pm_async_show(struct kobject *kobj, struct kobj_attribute *attr,
			     char *buf)
{
	return sprintf(buf, "%d\n", pm_async_enabled);
}

static ssize_t pm_async_store(struct kobject *kobj, struct kobj_attribute *attr,
			      const char *buf, size_t n)
{
	unsigned long val;

	if (strict_strtoul(buf, 10, &val))
		return -EINVAL;

	if (val > 1)
		return -EINVAL;

	pm_async_enabled = val;
	return n;
}

power_attr(pm_async);

#ifdef CONFIG_PM_DEBUG
int pm_test_level = TEST_NONE;

static const char * const pm_tests[__TEST_AFTER_LAST] = {
	[TEST_NONE] = "none",
	[TEST_CORE] = "core",
	[TEST_CPUS] = "processors",
	[TEST_PLATFORM] = "platform",
	[TEST_DEVICES] = "devices",
	[TEST_FREEZER] = "freezer",
};

static ssize_t pm_test_show(struct kobject *kobj, struct kobj_attribute *attr,
				char *buf)
{
	char *s = buf;
	int level;

	for (level = TEST_FIRST; level <= TEST_MAX; level++)
		if (pm_tests[level]) {
			if (level == pm_test_level)
				s += sprintf(s, "[%s] ", pm_tests[level]);
			else
				s += sprintf(s, "%s ", pm_tests[level]);
		}

	if (s != buf)
		/* convert the last space to a newline */
		*(s-1) = '\n';

	return (s - buf);
}

static ssize_t pm_test_store(struct kobject *kobj, struct kobj_attribute *attr,
				const char *buf, size_t n)
{
	const char * const *s;
	int level;
	char *p;
	int len;
	int error = -EINVAL;

	p = memchr(buf, '\n', n);
	len = p ? p - buf : n;

	mutex_lock(&pm_mutex);

	level = TEST_FIRST;
	for (s = &pm_tests[level]; level <= TEST_MAX; s++, level++)
		if (*s && len == strlen(*s) && !strncmp(buf, *s, len)) {
			pm_test_level = level;
			error = 0;
			break;
		}

	mutex_unlock(&pm_mutex);

	return error ? error : n;
}

power_attr(pm_test);
#endif /* CONFIG_PM_DEBUG */

#endif /* CONFIG_PM_SLEEP */

struct kobject *power_kobj;

/**
 *	state - control system power state.
 *
 *	show() returns what states are supported, which is hard-coded to
 *	'standby' (Power-On Suspend), 'mem' (Suspend-to-RAM), and
 *	'disk' (Suspend-to-Disk).
 *
 *	store() accepts one of those strings, translates it into the 
 *	proper enumerated value, and initiates a suspend transition.
 */
static ssize_t state_show(struct kobject *kobj, struct kobj_attribute *attr,
			  char *buf)
{
	char *s = buf;
#ifdef CONFIG_SUSPEND
	int i;

	for (i = 0; i < PM_SUSPEND_MAX; i++) {
		if (pm_states[i] && valid_state(i))
			s += sprintf(s,"%s ", pm_states[i]);
	}
#endif
#ifdef CONFIG_HIBERNATION
	s += sprintf(s, "%s\n", "disk");
#else
	if (s != buf)
		/* convert the last space to a newline */
		*(s-1) = '\n';
#endif
	return (s - buf);
}
#ifdef CONFIG_FAST_BOOT
bool fake_shut_down = false;
EXPORT_SYMBOL(fake_shut_down);

extern void wakelock_force_suspend(void);
#endif

static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr,
			   const char *buf, size_t n)
{
#ifdef CONFIG_SUSPEND
#ifdef CONFIG_EARLYSUSPEND
	suspend_state_t state = PM_SUSPEND_ON;
#else
	suspend_state_t state = PM_SUSPEND_STANDBY;
#endif
	const char * const *s;
#endif
	char *p;
	int len;
	int error = -EINVAL;

	p = memchr(buf, '\n', n);
	len = p ? p - buf : n;

	/* First, check if we are requested to hibernate */
	if (len == 4 && !strncmp(buf, "disk", len)) {
		error = hibernate();
  goto Exit;
	}

#ifdef CONFIG_SUSPEND
	for (s = &pm_states[state]; state < PM_SUSPEND_MAX; s++, state++) {
		if (*s && len == strlen(*s) && !strncmp(buf, *s, len))
			break;
	}

#ifdef CONFIG_FAST_BOOT
	if (len == 4 && !strncmp(buf, "dmem", len)) {
		pr_info("%s: fake shut down!!!\n", __func__);
		fake_shut_down = true;
		state = PM_SUSPEND_MEM;
	}
#endif

	if (state < PM_SUSPEND_MAX && *s) {
#ifdef CONFIG_EARLYSUSPEND
		if (state == PM_SUSPEND_ON || valid_state(state)) {
			error = 0;
			request_suspend_state(state);
		}
#ifdef CONFIG_FAST_BOOT
		if (fake_shut_down)
			wakelock_force_suspend();
#endif
#else
		error = enter_state(state);
#endif
	}
#endif

 Exit:
	return error ? error : n;
}

power_attr(state);

#ifdef CONFIG_PM_SLEEP
/*
 * The 'wakeup_count' attribute, along with the functions defined in
 * drivers/base/power/wakeup.c, provides a means by which wakeup events can be
 * handled in a non-racy way.
 *
 * If a wakeup event occurs when the system is in a sleep state, it simply is
 * woken up.  In turn, if an event that would wake the system up from a sleep
 * state occurs when it is undergoing a transition to that sleep state, the
 * transition should be aborted.  Moreover, if such an event occurs when the
 * system is in the working state, an attempt to start a transition to the
 * given sleep state should fail during certain period after the detection of
 * the event.  Using the 'state' attribute alone is not sufficient to satisfy
 * these requirements, because a wakeup event may occur exactly when 'state'
 * is being written to and may be delivered to user space right before it is
 * frozen, so the event will remain only partially processed until the system is
 * woken up by another event.  In particular, it won't cause the transition to
 * a sleep state to be aborted.
 *
 * This difficulty may be overcome if user space uses 'wakeup_count' before
 * writing to 'state'.  It first should read from 'wakeup_count' and store
 * the read value.  Then, after carrying out its own preparations for the system
 * transition to a sleep state, it should write the stored value to
 * 'wakeup_count'.  If that fails, at least one wakeup event has occurred since
 * 'wakeup_count' was read and 'state' should not be written to.  Otherwise, it
 * is allowed to write to 'state', but the transition will be aborted if there
 * are any wakeup events detected after 'wakeup_count' was written to.
 */

static ssize_t wakeup_count_show(struct kobject *kobj,
				struct kobj_attribute *attr,
				char *buf)
{
	unsigned int val;

	return pm_get_wakeup_count(&val) ? sprintf(buf, "%u\n", val) : -EINTR;
}

static ssize_t wakeup_count_store(struct kobject *kobj,
				struct kobj_attribute *attr,
				const char *buf, size_t n)
{
	unsigned int val;

	if (sscanf(buf, "%u", &val) == 1) {
		if (pm_save_wakeup_count(val))
			return n;
	}
	return -EINVAL;
}

power_attr(wakeup_count);
#endif /* CONFIG_PM_SLEEP */

#ifdef CONFIG_PM_TRACE
int pm_trace_enabled;

static ssize_t pm_trace_show(struct kobject *kobj, struct kobj_attribute *attr,
			     char *buf)
{
	return sprintf(buf, "%d\n", pm_trace_enabled);
}

static ssize_t
pm_trace_store(struct kobject *kobj, struct kobj_attribute *attr,
	       const char *buf, size_t n)
{
	int val;

	if (sscanf(buf, "%d", &val) == 1) {
		pm_trace_enabled = !!val;
		return n;
	}
	return -EINVAL;
}

power_attr(pm_trace);

static ssize_t pm_trace_dev_match_show(struct kobject *kobj,
				       struct kobj_attribute *attr,
				       char *buf)
{
	return show_trace_dev_match(buf, PAGE_SIZE);
}

static ssize_t
pm_trace_dev_match_store(struct kobject *kobj, struct kobj_attribute *attr,
			 const char *buf, size_t n)
{
	return -EINVAL;
}

power_attr(pm_trace_dev_match);

#endif /* CONFIG_PM_TRACE */

#ifdef CONFIG_USER_WAKELOCK
power_attr(wake_lock);
power_attr(wake_unlock);
#endif

#ifdef CONFIG_DVFS_LIMIT
static int cpufreq_max_limit_val = -1;
static int cpufreq_min_limit_val = -1;
DEFINE_MUTEX(cpufreq_limit_mutex);

static ssize_t cpufreq_table_show(struct kobject *kobj,
				struct kobj_attribute *attr,
				char *buf)
{
	ssize_t count = 0;
	struct cpufreq_frequency_table *table;
	struct cpufreq_policy *policy;
	unsigned int min_freq = ~0;
	unsigned int max_freq = 0;
	unsigned int i = 0;

	table = cpufreq_frequency_get_table(0);
	if (!table) {
		printk(KERN_ERR "%s: Failed to get the cpufreq table\n",
			__func__);
		return sprintf(buf, "Failed to get the cpufreq table\n");
	}

	policy = cpufreq_cpu_get(0);
	if (policy) {
	#if 0 /* /sys/devices/system/cpu/cpu0/cpufreq/scaling_min&max_freq */
		min_freq = policy->min_freq;
		max_freq = policy->max_freq;
	#else /* /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_min&max_freq */
		min_freq = policy->cpuinfo.min_freq;
		max_freq = policy->cpuinfo.max_freq;
	#endif
	}

	for (i = 0; (table[i].frequency != CPUFREQ_TABLE_END); i++) {
		if ((table[i].frequency == CPUFREQ_ENTRY_INVALID) ||
		    (table[i].frequency > max_freq) ||
		    (table[i].frequency < min_freq))
			continue;
		count += sprintf(&buf[count], "%d ", table[i].frequency);
	}
	count += sprintf(&buf[count], "\n");

	return count;
}

static ssize_t cpufreq_table_store(struct kobject *kobj,
				struct kobj_attribute *attr,
				const char *buf, size_t n)
{
	printk(KERN_ERR "%s: cpufreq_table is read-only\n", __func__);
	return -EINVAL;
}

#define VALID_LEVEL 1
static int get_cpufreq_level(unsigned int freq, unsigned int *level)
{
	struct cpufreq_frequency_table *table;
	unsigned int i = 0;

	table = cpufreq_frequency_get_table(0);
	if (!table) {
		printk(KERN_ERR "%s: Failed to get the cpufreq table\n",
			__func__);
		return -EINVAL;
	}

	for (i = 0; (table[i].frequency != CPUFREQ_TABLE_END); i++)
		if (table[i].frequency == freq) {
			*level = i;
			return VALID_LEVEL;
		}

	printk(KERN_ERR "%s: %u KHz is an unsupported cpufreq\n",
		__func__, freq);
	return -EINVAL;
}

static ssize_t cpufreq_max_limit_show(struct kobject *kobj,
					struct kobj_attribute *attr,
					char *buf)
{
	return sprintf(buf, "%d\n", cpufreq_max_limit_val);
}

static ssize_t cpufreq_max_limit_store(struct kobject *kobj,
					struct kobj_attribute *attr,
					const char *buf, size_t n)
{
	int val;
	unsigned int cpufreq_level;
	int lock_ret;
	ssize_t ret = -EINVAL;

	mutex_lock(&cpufreq_limit_mutex);

	if (sscanf(buf, "%d", &val) != 1) {
		printk(KERN_ERR "%s: Invalid cpufreq format\n", __func__);
		goto out;
	}

	if (val == -1) { /* Unlock request */
		if (cpufreq_max_limit_val != -1) {
			exynos_cpufreq_upper_limit_free(DVFS_LOCK_ID_USER);
			cpufreq_max_limit_val = -1;
		} else /* Already unlocked */
			printk(KERN_ERR "%s: Unlock request is ignored\n",
				__func__);
	} else { /* Lock request */
		if (get_cpufreq_level((unsigned int)val, &cpufreq_level)
		    == VALID_LEVEL) {
			if (cpufreq_max_limit_val != -1)
				/* Unlock the previous lock */
				exynos_cpufreq_upper_limit_free(
					DVFS_LOCK_ID_USER);
			lock_ret = exynos_cpufreq_upper_limit(
					DVFS_LOCK_ID_USER, cpufreq_level);
			/* ret of exynos_cpufreq_upper_limit is meaningless.
			   0 is fail? success? */
			cpufreq_max_limit_val = val;
		} else /* Invalid lock request --> No action */
			printk(KERN_ERR "%s: Lock request is invalid\n",
				__func__);
	}

	ret = n;
out:
	mutex_unlock(&cpufreq_limit_mutex);
	return ret;
}

static ssize_t cpufreq_min_limit_show(struct kobject *kobj,
					struct kobj_attribute *attr,
					char *buf)
{
	return sprintf(buf, "%d\n", cpufreq_min_limit_val);
}

static ssize_t cpufreq_min_limit_store(struct kobject *kobj,
					struct kobj_attribute *attr,
					const char *buf, size_t n)
{
	int val;
	unsigned int cpufreq_level;
	int lock_ret;
	ssize_t ret = -EINVAL;

	mutex_lock(&cpufreq_limit_mutex);

	if (sscanf(buf, "%d", &val) != 1) {
		printk(KERN_ERR "%s: Invalid cpufreq format\n", __func__);
		goto out;
	}

	if (val == -1) { /* Unlock request */
		if (cpufreq_min_limit_val != -1) {
			exynos_cpufreq_lock_free(DVFS_LOCK_ID_USER);
			cpufreq_min_limit_val = -1;
		} else /* Already unlocked */
			printk(KERN_ERR "%s: Unlock request is ignored\n",
				__func__);
	} else { /* Lock request */
		if (get_cpufreq_level((unsigned int)val, &cpufreq_level)
			== VALID_LEVEL) {
			if (cpufreq_min_limit_val != -1)
				/* Unlock the previous lock */
				exynos_cpufreq_lock_free(DVFS_LOCK_ID_USER);
			lock_ret = exynos_cpufreq_lock(
					DVFS_LOCK_ID_USER, cpufreq_level);
			/* ret of exynos_cpufreq_lock is meaningless.
			   0 is fail? success? */
			cpufreq_min_limit_val = val;
		if ((cpufreq_max_limit_val != -1) &&
			    (cpufreq_min_limit_val > cpufreq_max_limit_val))
				printk(KERN_ERR "%s: Min lock may not work well"
					" because of Max lock\n", __func__);
		} else /* Invalid lock request --> No action */
			printk(KERN_ERR "%s: Lock request is invalid\n",
				__func__);
	}

	ret = n;
out:
	mutex_unlock(&cpufreq_limit_mutex);
	return ret;
}

power_attr(cpufreq_table);
power_attr(cpufreq_max_limit);
power_attr(cpufreq_min_limit);
#endif /* CONFIG_DVFS_LIMIT */

#ifdef CONFIG_GPU_LOCK
static int gpu_lock_val;
DEFINE_MUTEX(gpu_lock_mutex);

static ssize_t gpu_lock_show(struct kobject *kobj,
					struct kobj_attribute *attr,
					char *buf)
{
	return sprintf(buf, "%d\n", gpu_lock_val);
}

static ssize_t gpu_lock_store(struct kobject *kobj,
					struct kobj_attribute *attr,
					const char *buf, size_t n)
{
	int val;
	ssize_t ret = -EINVAL;

	mutex_lock(&gpu_lock_mutex);

	if (sscanf(buf, "%d", &val) != 1) {
		pr_info("%s: Invalid mali lock format\n", __func__);
		goto out;
	}

	if (val == 0) {
		if (gpu_lock_val != 0) {
			exynos_gpufreq_unlock();
			gpu_lock_val = 0;
		} else {
			pr_info("%s: Unlock request is ignored\n", __func__);
		}
	} else if (val == 1) {
		if (gpu_lock_val == 0) {
			exynos_gpufreq_lock();
			gpu_lock_val = val;
		} else {
			pr_info("%s: Lock request is ignored\n", __func__);
		}
	} else {
		pr_info("%s: Lock request is invalid\n", __func__);
	}

	ret = n;
out:
	mutex_unlock(&gpu_lock_mutex);
	return ret;
}
power_attr(gpu_lock);
#endif

#ifdef CONFIG_ROTATION_BOOSTER_SUPPORT
static inline void rotation_booster_on(void)
{
	exynos_cpufreq_lock(DVFS_LOCK_ID_ROTATION_BOOSTER, L0);
	exynos4_busfreq_lock(DVFS_LOCK_ID_ROTATION_BOOSTER, BUS_L0);
	exynos_gpufreq_lock();
}

static inline void rotation_booster_off(void)
{
	exynos_gpufreq_unlock();
	exynos4_busfreq_lock_free(DVFS_LOCK_ID_ROTATION_BOOSTER);
	exynos_cpufreq_lock_free(DVFS_LOCK_ID_ROTATION_BOOSTER);
}

static int rotation_booster_val;
DEFINE_MUTEX(rotation_booster_mutex);

static ssize_t rotation_booster_show(struct kobject *kobj,
					struct kobj_attribute *attr,
					char *buf)
{
	return sprintf(buf, "%d\n", rotation_booster_val);
}

static ssize_t rotation_booster_store(struct kobject *kobj,
					struct kobj_attribute *attr,
					const char *buf, size_t n)
{
	int val;
	ssize_t ret = -EINVAL;

	mutex_lock(&rotation_booster_mutex);

	if (sscanf(buf, "%d", &val) != 1) {
		pr_info("%s: Invalid rotation_booster on, off format\n", \
			__func__);
		goto out;
	}

	if (val == 0) {
		if (rotation_booster_val != 0) {
			rotation_booster_off();
			rotation_booster_val = 0;
		} else {
			pr_info("%s: rotation_booster off request"
				" is ignored\n", __func__);
		}
	} else if (val == 1) {
		if (rotation_booster_val == 0) {
			rotation_booster_on();
			rotation_booster_val = val;
		} else {
			pr_info("%s: rotation_booster on request"
				" is ignored\n", __func__);
		}
	} else {
		pr_info("%s: rotation_booster request is invalid\n", __func__);
	}

	ret = n;
out:
	mutex_unlock(&rotation_booster_mutex);
	return ret;
}
power_attr(rotation_booster);
#else /* CONFIG_ROTATION_BOOSTER_SUPPORT */
static inline void rotation_booster_on(void){}
static inline void rotation_booster_off(void){}
#endif /* CONFIG_ROTATION_BOOSTER_SUPPORT */

#ifdef CONFIG_PEGASUS_GPU_LOCK
static int mali_lock_val;
static int mali_lock_cnt;
DEFINE_MUTEX(mali_lock_mutex);

static ssize_t mali_lock_show(struct kobject *kobj,
					struct kobj_attribute *attr,
					char *buf)
{
	return sprintf(buf, "level = %d, count = %d\n",
			mali_lock_val, mali_lock_cnt);
}

static ssize_t mali_lock_store(struct kobject *kobj,
					struct kobj_attribute *attr,
					const char *buf, size_t n)
{
	int val;
	ssize_t ret = -EINVAL;

	mutex_lock(&mali_lock_mutex);

	if (sscanf(buf, "%d", &val) != 1) {
		pr_info("%s: Invalid mali lock format\n", __func__);
		goto out;
	}

	if (val == 0) {	/* unlock */
		mali_lock_cnt = mali_dvfs_bottom_lock_pop();
		if (mali_lock_cnt == 0)
			mali_lock_val = 0;
	} else if (val > 0 && val < 5) { /* lock with level */
		mali_lock_cnt = mali_dvfs_bottom_lock_push(val);
		if (mali_lock_val < val)
			mali_lock_val = val;
	} else {
		pr_info("%s: Lock request is invalid\n", __func__);
	}

	ret = n;
out:
	mutex_unlock(&mali_lock_mutex);
	return ret;
}
power_attr(mali_lock);
#endif

static struct attribute * g[] = {
	&state_attr.attr,
#ifdef CONFIG_PM_TRACE
	&pm_trace_attr.attr,
	&pm_trace_dev_match_attr.attr,
#endif
#ifdef CONFIG_PM_SLEEP
	&pm_async_attr.attr,
	&wakeup_count_attr.attr,
#ifdef CONFIG_PM_DEBUG
	&pm_test_attr.attr,
#endif
#ifdef CONFIG_USER_WAKELOCK
	&wake_lock_attr.attr,
	&wake_unlock_attr.attr,
#endif
#endif
#ifdef CONFIG_DVFS_LIMIT
	&cpufreq_table_attr.attr,
	&cpufreq_max_limit_attr.attr,
	&cpufreq_min_limit_attr.attr,
#endif
#ifdef CONFIG_GPU_LOCK
	&gpu_lock_attr.attr,
#endif
#ifdef CONFIG_PEGASUS_GPU_LOCK
	&mali_lock_attr.attr,
#endif
#ifdef CONFIG_ROTATION_BOOSTER_SUPPORT
	&rotation_booster_attr.attr,
#endif
	NULL,
};

static struct attribute_group attr_group = {
	.attrs = g,
};

#ifdef CONFIG_PM_RUNTIME
struct workqueue_struct *pm_wq;
EXPORT_SYMBOL_GPL(pm_wq);

static int __init pm_start_workqueue(void)
{
	pm_wq = alloc_workqueue("pm", WQ_FREEZABLE, 0);

	return pm_wq ? 0 : -ENOMEM;
}
#else
static inline int pm_start_workqueue(void) { return 0; }
#endif

static int __init pm_init(void)
{
	int error = pm_start_workqueue();
	if (error)
		return error;
	hibernate_image_size_init();
	hibernate_reserved_size_init();
	power_kobj = kobject_create_and_add("power", NULL);
	if (!power_kobj)
		return -ENOMEM;
	return sysfs_create_group(power_kobj, &attr_group);
}

core_initcall(pm_init);