aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/libstdc++-v3/include/bits/hashtable.h
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.9/libstdc++-v3/include/bits/hashtable.h')
-rw-r--r--gcc-4.9/libstdc++-v3/include/bits/hashtable.h2072
1 files changed, 2072 insertions, 0 deletions
diff --git a/gcc-4.9/libstdc++-v3/include/bits/hashtable.h b/gcc-4.9/libstdc++-v3/include/bits/hashtable.h
new file mode 100644
index 0000000..22e17d2
--- /dev/null
+++ b/gcc-4.9/libstdc++-v3/include/bits/hashtable.h
@@ -0,0 +1,2072 @@
+// hashtable.h header -*- C++ -*-
+
+// Copyright (C) 2007-2014 Free Software Foundation, Inc.
+//
+// This file is part of the GNU ISO C++ Library. This library is free
+// software; you can redistribute it and/or modify it under the
+// terms of the GNU General Public License as published by the
+// Free Software Foundation; either version 3, or (at your option)
+// any later version.
+
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+
+// Under Section 7 of GPL version 3, you are granted additional
+// permissions described in the GCC Runtime Library Exception, version
+// 3.1, as published by the Free Software Foundation.
+
+// You should have received a copy of the GNU General Public License and
+// a copy of the GCC Runtime Library Exception along with this program;
+// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
+// <http://www.gnu.org/licenses/>.
+
+/** @file bits/hashtable.h
+ * This is an internal header file, included by other library headers.
+ * Do not attempt to use it directly. @headername{unordered_map, unordered_set}
+ */
+
+#ifndef _HASHTABLE_H
+#define _HASHTABLE_H 1
+
+#pragma GCC system_header
+
+#include <bits/hashtable_policy.h>
+
+namespace std _GLIBCXX_VISIBILITY(default)
+{
+_GLIBCXX_BEGIN_NAMESPACE_VERSION
+
+ template<typename _Tp, typename _Hash>
+ using __cache_default
+ = __not_<__and_<// Do not cache for fast hasher.
+ __is_fast_hash<_Hash>,
+ // Mandatory to have erase not throwing.
+ __detail::__is_noexcept_hash<_Tp, _Hash>>>;
+
+ /**
+ * Primary class template _Hashtable.
+ *
+ * @ingroup hashtable-detail
+ *
+ * @tparam _Value CopyConstructible type.
+ *
+ * @tparam _Key CopyConstructible type.
+ *
+ * @tparam _Alloc An allocator type
+ * ([lib.allocator.requirements]) whose _Alloc::value_type is
+ * _Value. As a conforming extension, we allow for
+ * _Alloc::value_type != _Value.
+ *
+ * @tparam _ExtractKey Function object that takes an object of type
+ * _Value and returns a value of type _Key.
+ *
+ * @tparam _Equal Function object that takes two objects of type k
+ * and returns a bool-like value that is true if the two objects
+ * are considered equal.
+ *
+ * @tparam _H1 The hash function. A unary function object with
+ * argument type _Key and result type size_t. Return values should
+ * be distributed over the entire range [0, numeric_limits<size_t>:::max()].
+ *
+ * @tparam _H2 The range-hashing function (in the terminology of
+ * Tavori and Dreizin). A binary function object whose argument
+ * types and result type are all size_t. Given arguments r and N,
+ * the return value is in the range [0, N).
+ *
+ * @tparam _Hash The ranged hash function (Tavori and Dreizin). A
+ * binary function whose argument types are _Key and size_t and
+ * whose result type is size_t. Given arguments k and N, the
+ * return value is in the range [0, N). Default: hash(k, N) =
+ * h2(h1(k), N). If _Hash is anything other than the default, _H1
+ * and _H2 are ignored.
+ *
+ * @tparam _RehashPolicy Policy class with three members, all of
+ * which govern the bucket count. _M_next_bkt(n) returns a bucket
+ * count no smaller than n. _M_bkt_for_elements(n) returns a
+ * bucket count appropriate for an element count of n.
+ * _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
+ * current bucket count is n_bkt and the current element count is
+ * n_elt, we need to increase the bucket count. If so, returns
+ * make_pair(true, n), where n is the new bucket count. If not,
+ * returns make_pair(false, <anything>)
+ *
+ * @tparam _Traits Compile-time class with three boolean
+ * std::integral_constant members: __cache_hash_code, __constant_iterators,
+ * __unique_keys.
+ *
+ * Each _Hashtable data structure has:
+ *
+ * - _Bucket[] _M_buckets
+ * - _Hash_node_base _M_before_begin
+ * - size_type _M_bucket_count
+ * - size_type _M_element_count
+ *
+ * with _Bucket being _Hash_node* and _Hash_node containing:
+ *
+ * - _Hash_node* _M_next
+ * - Tp _M_value
+ * - size_t _M_hash_code if cache_hash_code is true
+ *
+ * In terms of Standard containers the hashtable is like the aggregation of:
+ *
+ * - std::forward_list<_Node> containing the elements
+ * - std::vector<std::forward_list<_Node>::iterator> representing the buckets
+ *
+ * The non-empty buckets contain the node before the first node in the
+ * bucket. This design makes it possible to implement something like a
+ * std::forward_list::insert_after on container insertion and
+ * std::forward_list::erase_after on container erase
+ * calls. _M_before_begin is equivalent to
+ * std::forward_list::before_begin. Empty buckets contain
+ * nullptr. Note that one of the non-empty buckets contains
+ * &_M_before_begin which is not a dereferenceable node so the
+ * node pointer in a bucket shall never be dereferenced, only its
+ * next node can be.
+ *
+ * Walking through a bucket's nodes requires a check on the hash code to
+ * see if each node is still in the bucket. Such a design assumes a
+ * quite efficient hash functor and is one of the reasons it is
+ * highly advisable to set __cache_hash_code to true.
+ *
+ * The container iterators are simply built from nodes. This way
+ * incrementing the iterator is perfectly efficient independent of
+ * how many empty buckets there are in the container.
+ *
+ * On insert we compute the element's hash code and use it to find the
+ * bucket index. If the element must be inserted in an empty bucket
+ * we add it at the beginning of the singly linked list and make the
+ * bucket point to _M_before_begin. The bucket that used to point to
+ * _M_before_begin, if any, is updated to point to its new before
+ * begin node.
+ *
+ * On erase, the simple iterator design requires using the hash
+ * functor to get the index of the bucket to update. For this
+ * reason, when __cache_hash_code is set to false the hash functor must
+ * not throw and this is enforced by a static assertion.
+ *
+ * Functionality is implemented by decomposition into base classes,
+ * where the derived _Hashtable class is used in _Map_base,
+ * _Insert, _Rehash_base, and _Equality base classes to access the
+ * "this" pointer. _Hashtable_base is used in the base classes as a
+ * non-recursive, fully-completed-type so that detailed nested type
+ * information, such as iterator type and node type, can be
+ * used. This is similar to the "Curiously Recurring Template
+ * Pattern" (CRTP) technique, but uses a reconstructed, not
+ * explicitly passed, template pattern.
+ *
+ * Base class templates are:
+ * - __detail::_Hashtable_base
+ * - __detail::_Map_base
+ * - __detail::_Insert
+ * - __detail::_Rehash_base
+ * - __detail::_Equality
+ */
+ template<typename _Key, typename _Value, typename _Alloc,
+ typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash,
+ typename _RehashPolicy, typename _Traits>
+ class _Hashtable
+ : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _Traits>,
+ public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>,
+ public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>,
+ public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>,
+ public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>,
+ private __detail::_Hashtable_alloc<
+ typename __alloctr_rebind<_Alloc,
+ __detail::_Hash_node<_Value,
+ _Traits::__hash_cached::value> >::__type>
+ {
+ using __traits_type = _Traits;
+ using __hash_cached = typename __traits_type::__hash_cached;
+ using __node_type = __detail::_Hash_node<_Value, __hash_cached::value>;
+ using __node_alloc_type =
+ typename __alloctr_rebind<_Alloc, __node_type>::__type;
+
+ using __hashtable_alloc = __detail::_Hashtable_alloc<__node_alloc_type>;
+
+ using __value_alloc_traits =
+ typename __hashtable_alloc::__value_alloc_traits;
+ using __node_alloc_traits =
+ typename __hashtable_alloc::__node_alloc_traits;
+ using __node_base = typename __hashtable_alloc::__node_base;
+ using __bucket_type = typename __hashtable_alloc::__bucket_type;
+
+ public:
+ typedef _Key key_type;
+ typedef _Value value_type;
+ typedef _Alloc allocator_type;
+ typedef _Equal key_equal;
+
+ // mapped_type, if present, comes from _Map_base.
+ // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
+ typedef typename __value_alloc_traits::pointer pointer;
+ typedef typename __value_alloc_traits::const_pointer const_pointer;
+ typedef value_type& reference;
+ typedef const value_type& const_reference;
+
+ private:
+ using __rehash_type = _RehashPolicy;
+ using __rehash_state = typename __rehash_type::_State;
+
+ using __constant_iterators = typename __traits_type::__constant_iterators;
+ using __unique_keys = typename __traits_type::__unique_keys;
+
+ using __key_extract = typename std::conditional<
+ __constant_iterators::value,
+ __detail::_Identity,
+ __detail::_Select1st>::type;
+
+ using __hashtable_base = __detail::
+ _Hashtable_base<_Key, _Value, _ExtractKey,
+ _Equal, _H1, _H2, _Hash, _Traits>;
+
+ using __hash_code_base = typename __hashtable_base::__hash_code_base;
+ using __hash_code = typename __hashtable_base::__hash_code;
+ using __ireturn_type = typename __hashtable_base::__ireturn_type;
+
+ using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
+ _Equal, _H1, _H2, _Hash,
+ _RehashPolicy, _Traits>;
+
+ using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
+ _ExtractKey, _Equal,
+ _H1, _H2, _Hash,
+ _RehashPolicy, _Traits>;
+
+ using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
+ _Equal, _H1, _H2, _Hash,
+ _RehashPolicy, _Traits>;
+
+ using __reuse_or_alloc_node_type =
+ __detail::_ReuseOrAllocNode<__node_alloc_type>;
+
+ // Metaprogramming for picking apart hash caching.
+ template<typename _Cond>
+ using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>;
+
+ template<typename _Cond>
+ using __if_hash_not_cached = __or_<__hash_cached, _Cond>;
+
+ // Compile-time diagnostics.
+
+ // _Hash_code_base has everything protected, so use this derived type to
+ // access it.
+ struct __hash_code_base_access : __hash_code_base
+ { using __hash_code_base::_M_bucket_index; };
+
+ // Getting a bucket index from a node shall not throw because it is used
+ // in methods (erase, swap...) that shall not throw.
+ static_assert(noexcept(declval<const __hash_code_base_access&>()
+ ._M_bucket_index((const __node_type*)nullptr,
+ (std::size_t)0)),
+ "Cache the hash code or qualify your functors involved"
+ " in hash code and bucket index computation with noexcept");
+
+ // Following two static assertions are necessary to guarantee
+ // that local_iterator will be default constructible.
+
+ // When hash codes are cached local iterator inherits from H2 functor
+ // which must then be default constructible.
+ static_assert(__if_hash_cached<is_default_constructible<_H2>>::value,
+ "Functor used to map hash code to bucket index"
+ " must be default constructible");
+
+ template<typename _Keya, typename _Valuea, typename _Alloca,
+ typename _ExtractKeya, typename _Equala,
+ typename _H1a, typename _H2a, typename _Hasha,
+ typename _RehashPolicya, typename _Traitsa,
+ bool _Unique_keysa>
+ friend struct __detail::_Map_base;
+
+ template<typename _Keya, typename _Valuea, typename _Alloca,
+ typename _ExtractKeya, typename _Equala,
+ typename _H1a, typename _H2a, typename _Hasha,
+ typename _RehashPolicya, typename _Traitsa>
+ friend struct __detail::_Insert_base;
+
+ template<typename _Keya, typename _Valuea, typename _Alloca,
+ typename _ExtractKeya, typename _Equala,
+ typename _H1a, typename _H2a, typename _Hasha,
+ typename _RehashPolicya, typename _Traitsa,
+ bool _Constant_iteratorsa, bool _Unique_keysa>
+ friend struct __detail::_Insert;
+
+ public:
+ using size_type = typename __hashtable_base::size_type;
+ using difference_type = typename __hashtable_base::difference_type;
+
+ using iterator = typename __hashtable_base::iterator;
+ using const_iterator = typename __hashtable_base::const_iterator;
+
+ using local_iterator = typename __hashtable_base::local_iterator;
+ using const_local_iterator = typename __hashtable_base::
+ const_local_iterator;
+
+ private:
+ __bucket_type* _M_buckets;
+ size_type _M_bucket_count;
+ __node_base _M_before_begin;
+ size_type _M_element_count;
+ _RehashPolicy _M_rehash_policy;
+
+ __hashtable_alloc&
+ _M_base_alloc() { return *this; }
+
+ using __hashtable_alloc::_M_deallocate_buckets;
+
+ void
+ _M_deallocate_buckets()
+ { this->_M_deallocate_buckets(_M_buckets, _M_bucket_count); }
+
+ // Gets bucket begin, deals with the fact that non-empty buckets contain
+ // their before begin node.
+ __node_type*
+ _M_bucket_begin(size_type __bkt) const;
+
+ __node_type*
+ _M_begin() const
+ { return static_cast<__node_type*>(_M_before_begin._M_nxt); }
+
+ template<typename _NodeGenerator>
+ void
+ _M_assign(const _Hashtable&, const _NodeGenerator&);
+
+ void
+ _M_move_assign(_Hashtable&&, std::true_type);
+
+ void
+ _M_move_assign(_Hashtable&&, std::false_type);
+
+ void
+ _M_reset() noexcept;
+
+ public:
+ // Constructor, destructor, assignment, swap
+ _Hashtable(size_type __bucket_hint,
+ const _H1&, const _H2&, const _Hash&,
+ const _Equal&, const _ExtractKey&,
+ const allocator_type&);
+
+ template<typename _InputIterator>
+ _Hashtable(_InputIterator __first, _InputIterator __last,
+ size_type __bucket_hint,
+ const _H1&, const _H2&, const _Hash&,
+ const _Equal&, const _ExtractKey&,
+ const allocator_type&);
+
+ _Hashtable(const _Hashtable&);
+
+ _Hashtable(_Hashtable&&) noexcept;
+
+ _Hashtable(const _Hashtable&, const allocator_type&);
+
+ _Hashtable(_Hashtable&&, const allocator_type&);
+
+ // Use delegating constructors.
+ explicit
+ _Hashtable(const allocator_type& __a)
+ : _Hashtable(10, _H1(), _H2(), _Hash(), key_equal(),
+ __key_extract(), __a)
+ { }
+
+ explicit
+ _Hashtable(size_type __n = 10,
+ const _H1& __hf = _H1(),
+ const key_equal& __eql = key_equal(),
+ const allocator_type& __a = allocator_type())
+ : _Hashtable(__n, __hf, _H2(), _Hash(), __eql,
+ __key_extract(), __a)
+ { }
+
+ template<typename _InputIterator>
+ _Hashtable(_InputIterator __f, _InputIterator __l,
+ size_type __n = 0,
+ const _H1& __hf = _H1(),
+ const key_equal& __eql = key_equal(),
+ const allocator_type& __a = allocator_type())
+ : _Hashtable(__f, __l, __n, __hf, _H2(), _Hash(), __eql,
+ __key_extract(), __a)
+ { }
+
+ _Hashtable(initializer_list<value_type> __l,
+ size_type __n = 0,
+ const _H1& __hf = _H1(),
+ const key_equal& __eql = key_equal(),
+ const allocator_type& __a = allocator_type())
+ : _Hashtable(__l.begin(), __l.end(), __n, __hf, _H2(), _Hash(), __eql,
+ __key_extract(), __a)
+ { }
+
+ _Hashtable&
+ operator=(const _Hashtable& __ht);
+
+ _Hashtable&
+ operator=(_Hashtable&& __ht)
+ noexcept(__node_alloc_traits::_S_nothrow_move())
+ {
+ constexpr bool __move_storage =
+ __node_alloc_traits::_S_propagate_on_move_assign()
+ || __node_alloc_traits::_S_always_equal();
+ _M_move_assign(std::move(__ht),
+ integral_constant<bool, __move_storage>());
+ return *this;
+ }
+
+ _Hashtable&
+ operator=(initializer_list<value_type> __l)
+ {
+ __reuse_or_alloc_node_type __roan(_M_begin(), *this);
+ _M_before_begin._M_nxt = nullptr;
+ clear();
+ this->_M_insert_range(__l.begin(), __l.end(), __roan);
+ return *this;
+ }
+
+ ~_Hashtable() noexcept;
+
+ void
+ swap(_Hashtable&)
+ noexcept(__node_alloc_traits::_S_nothrow_swap());
+
+ // Basic container operations
+ iterator
+ begin() noexcept
+ { return iterator(_M_begin()); }
+
+ const_iterator
+ begin() const noexcept
+ { return const_iterator(_M_begin()); }
+
+ iterator
+ end() noexcept
+ { return iterator(nullptr); }
+
+ const_iterator
+ end() const noexcept
+ { return const_iterator(nullptr); }
+
+ const_iterator
+ cbegin() const noexcept
+ { return const_iterator(_M_begin()); }
+
+ const_iterator
+ cend() const noexcept
+ { return const_iterator(nullptr); }
+
+ size_type
+ size() const noexcept
+ { return _M_element_count; }
+
+ bool
+ empty() const noexcept
+ { return size() == 0; }
+
+ allocator_type
+ get_allocator() const noexcept
+ { return allocator_type(this->_M_node_allocator()); }
+
+ size_type
+ max_size() const noexcept
+ { return __node_alloc_traits::max_size(this->_M_node_allocator()); }
+
+ // Observers
+ key_equal
+ key_eq() const
+ { return this->_M_eq(); }
+
+ // hash_function, if present, comes from _Hash_code_base.
+
+ // Bucket operations
+ size_type
+ bucket_count() const noexcept
+ { return _M_bucket_count; }
+
+ size_type
+ max_bucket_count() const noexcept
+ { return max_size(); }
+
+ size_type
+ bucket_size(size_type __n) const
+ { return std::distance(begin(__n), end(__n)); }
+
+ size_type
+ bucket(const key_type& __k) const
+ { return _M_bucket_index(__k, this->_M_hash_code(__k)); }
+
+ local_iterator
+ begin(size_type __n)
+ {
+ return local_iterator(*this, _M_bucket_begin(__n),
+ __n, _M_bucket_count);
+ }
+
+ local_iterator
+ end(size_type __n)
+ { return local_iterator(*this, nullptr, __n, _M_bucket_count); }
+
+ const_local_iterator
+ begin(size_type __n) const
+ {
+ return const_local_iterator(*this, _M_bucket_begin(__n),
+ __n, _M_bucket_count);
+ }
+
+ const_local_iterator
+ end(size_type __n) const
+ { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
+
+ // DR 691.
+ const_local_iterator
+ cbegin(size_type __n) const
+ {
+ return const_local_iterator(*this, _M_bucket_begin(__n),
+ __n, _M_bucket_count);
+ }
+
+ const_local_iterator
+ cend(size_type __n) const
+ { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
+
+ float
+ load_factor() const noexcept
+ {
+ return static_cast<float>(size()) / static_cast<float>(bucket_count());
+ }
+
+ // max_load_factor, if present, comes from _Rehash_base.
+
+ // Generalization of max_load_factor. Extension, not found in
+ // TR1. Only useful if _RehashPolicy is something other than
+ // the default.
+ const _RehashPolicy&
+ __rehash_policy() const
+ { return _M_rehash_policy; }
+
+ void
+ __rehash_policy(const _RehashPolicy&);
+
+ // Lookup.
+ iterator
+ find(const key_type& __k);
+
+ const_iterator
+ find(const key_type& __k) const;
+
+ size_type
+ count(const key_type& __k) const;
+
+ std::pair<iterator, iterator>
+ equal_range(const key_type& __k);
+
+ std::pair<const_iterator, const_iterator>
+ equal_range(const key_type& __k) const;
+
+ protected:
+ // Bucket index computation helpers.
+ size_type
+ _M_bucket_index(__node_type* __n) const noexcept
+ { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
+
+ size_type
+ _M_bucket_index(const key_type& __k, __hash_code __c) const
+ { return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); }
+
+ // Find and insert helper functions and types
+ // Find the node before the one matching the criteria.
+ __node_base*
+ _M_find_before_node(size_type, const key_type&, __hash_code) const;
+
+ __node_type*
+ _M_find_node(size_type __bkt, const key_type& __key,
+ __hash_code __c) const
+ {
+ __node_base* __before_n = _M_find_before_node(__bkt, __key, __c);
+ if (__before_n)
+ return static_cast<__node_type*>(__before_n->_M_nxt);
+ return nullptr;
+ }
+
+ // Insert a node at the beginning of a bucket.
+ void
+ _M_insert_bucket_begin(size_type, __node_type*);
+
+ // Remove the bucket first node
+ void
+ _M_remove_bucket_begin(size_type __bkt, __node_type* __next_n,
+ size_type __next_bkt);
+
+ // Get the node before __n in the bucket __bkt
+ __node_base*
+ _M_get_previous_node(size_type __bkt, __node_base* __n);
+
+ // Insert node with hash code __code, in bucket bkt if no rehash (assumes
+ // no element with its key already present). Take ownership of the node,
+ // deallocate it on exception.
+ iterator
+ _M_insert_unique_node(size_type __bkt, __hash_code __code,
+ __node_type* __n);
+
+ // Insert node with hash code __code. Take ownership of the node,
+ // deallocate it on exception.
+ iterator
+ _M_insert_multi_node(__node_type* __hint,
+ __hash_code __code, __node_type* __n);
+
+ template<typename... _Args>
+ std::pair<iterator, bool>
+ _M_emplace(std::true_type, _Args&&... __args);
+
+ template<typename... _Args>
+ iterator
+ _M_emplace(std::false_type __uk, _Args&&... __args)
+ { return _M_emplace(cend(), __uk, std::forward<_Args>(__args)...); }
+
+ // Emplace with hint, useless when keys are unique.
+ template<typename... _Args>
+ iterator
+ _M_emplace(const_iterator, std::true_type __uk, _Args&&... __args)
+ { return _M_emplace(__uk, std::forward<_Args>(__args)...).first; }
+
+ template<typename... _Args>
+ iterator
+ _M_emplace(const_iterator, std::false_type, _Args&&... __args);
+
+ template<typename _Arg, typename _NodeGenerator>
+ std::pair<iterator, bool>
+ _M_insert(_Arg&&, const _NodeGenerator&, std::true_type);
+
+ template<typename _Arg, typename _NodeGenerator>
+ iterator
+ _M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
+ std::false_type __uk)
+ {
+ return _M_insert(cend(), std::forward<_Arg>(__arg), __node_gen,
+ __uk);
+ }
+
+ // Insert with hint, not used when keys are unique.
+ template<typename _Arg, typename _NodeGenerator>
+ iterator
+ _M_insert(const_iterator, _Arg&& __arg, const _NodeGenerator& __node_gen,
+ std::true_type __uk)
+ {
+ return
+ _M_insert(std::forward<_Arg>(__arg), __node_gen, __uk).first;
+ }
+
+ // Insert with hint when keys are not unique.
+ template<typename _Arg, typename _NodeGenerator>
+ iterator
+ _M_insert(const_iterator, _Arg&&, const _NodeGenerator&, std::false_type);
+
+ size_type
+ _M_erase(std::true_type, const key_type&);
+
+ size_type
+ _M_erase(std::false_type, const key_type&);
+
+ iterator
+ _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n);
+
+ public:
+ // Emplace
+ template<typename... _Args>
+ __ireturn_type
+ emplace(_Args&&... __args)
+ { return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); }
+
+ template<typename... _Args>
+ iterator
+ emplace_hint(const_iterator __hint, _Args&&... __args)
+ {
+ return _M_emplace(__hint, __unique_keys(),
+ std::forward<_Args>(__args)...);
+ }
+
+ // Insert member functions via inheritance.
+
+ // Erase
+ iterator
+ erase(const_iterator);
+
+ // LWG 2059.
+ iterator
+ erase(iterator __it)
+ { return erase(const_iterator(__it)); }
+
+ size_type
+ erase(const key_type& __k)
+ {
+ if (__builtin_expect(_M_bucket_count == 0, false))
+ return 0;
+ return _M_erase(__unique_keys(), __k);
+ }
+
+ iterator
+ erase(const_iterator, const_iterator);
+
+ void
+ clear() noexcept;
+
+ // Set number of buckets to be appropriate for container of n element.
+ void rehash(size_type __n);
+
+ // DR 1189.
+ // reserve, if present, comes from _Rehash_base.
+
+ private:
+ // Helper rehash method used when keys are unique.
+ void _M_rehash_aux(size_type __n, std::true_type);
+
+ // Helper rehash method used when keys can be non-unique.
+ void _M_rehash_aux(size_type __n, std::false_type);
+
+ // Unconditionally change size of bucket array to n, restore
+ // hash policy state to __state on exception.
+ void _M_rehash(size_type __n, const __rehash_state& __state);
+ };
+
+
+ // Definitions of class template _Hashtable's out-of-line member functions.
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
+ _Equal, _H1, _H2, _Hash, _RehashPolicy,
+ _Traits>::__node_type*
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ _M_bucket_begin(size_type __bkt) const
+ {
+ __node_base* __n = _M_buckets[__bkt];
+ return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr;
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ _Hashtable(size_type __bucket_hint,
+ const _H1& __h1, const _H2& __h2, const _Hash& __h,
+ const _Equal& __eq, const _ExtractKey& __exk,
+ const allocator_type& __a)
+ : __hashtable_base(__exk, __h1, __h2, __h, __eq),
+ __map_base(),
+ __rehash_base(),
+ __hashtable_alloc(__node_alloc_type(__a)),
+ _M_element_count(0),
+ _M_rehash_policy()
+ {
+ _M_bucket_count = _M_rehash_policy._M_next_bkt(__bucket_hint);
+ _M_buckets = this->_M_allocate_buckets(_M_bucket_count);
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ template<typename _InputIterator>
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ _Hashtable(_InputIterator __f, _InputIterator __l,
+ size_type __bucket_hint,
+ const _H1& __h1, const _H2& __h2, const _Hash& __h,
+ const _Equal& __eq, const _ExtractKey& __exk,
+ const allocator_type& __a)
+ : __hashtable_base(__exk, __h1, __h2, __h, __eq),
+ __map_base(),
+ __rehash_base(),
+ __hashtable_alloc(__node_alloc_type(__a)),
+ _M_element_count(0),
+ _M_rehash_policy()
+ {
+ auto __nb_elems = __detail::__distance_fw(__f, __l);
+ _M_bucket_count =
+ _M_rehash_policy._M_next_bkt(
+ std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
+ __bucket_hint));
+
+ _M_buckets = this->_M_allocate_buckets(_M_bucket_count);
+ __try
+ {
+ for (; __f != __l; ++__f)
+ this->insert(*__f);
+ }
+ __catch(...)
+ {
+ clear();
+ _M_deallocate_buckets();
+ __throw_exception_again;
+ }
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>&
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::operator=(
+ const _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>& __ht)
+ {
+ if (&__ht == this)
+ return *this;
+
+ if (__node_alloc_traits::_S_propagate_on_copy_assign())
+ {
+ auto& __this_alloc = this->_M_node_allocator();
+ auto& __that_alloc = __ht._M_node_allocator();
+ if (!__node_alloc_traits::_S_always_equal()
+ && __this_alloc != __that_alloc)
+ {
+ // Replacement allocator cannot free existing storage.
+ this->_M_deallocate_nodes(_M_begin());
+ if (__builtin_expect(_M_bucket_count != 0, true))
+ _M_deallocate_buckets();
+ _M_reset();
+ std::__alloc_on_copy(__this_alloc, __that_alloc);
+ __hashtable_base::operator=(__ht);
+ _M_bucket_count = __ht._M_bucket_count;
+ _M_element_count = __ht._M_element_count;
+ _M_rehash_policy = __ht._M_rehash_policy;
+ __try
+ {
+ _M_assign(__ht,
+ [this](const __node_type* __n)
+ { return this->_M_allocate_node(__n->_M_v()); });
+ }
+ __catch(...)
+ {
+ // _M_assign took care of deallocating all memory. Now we
+ // must make sure this instance remains in a usable state.
+ _M_reset();
+ __throw_exception_again;
+ }
+ return *this;
+ }
+ std::__alloc_on_copy(__this_alloc, __that_alloc);
+ }
+
+ // Reuse allocated buckets and nodes.
+ __bucket_type* __former_buckets = nullptr;
+ std::size_t __former_bucket_count = _M_bucket_count;
+ const __rehash_state& __former_state = _M_rehash_policy._M_state();
+
+ if (_M_bucket_count != __ht._M_bucket_count)
+ {
+ __former_buckets = _M_buckets;
+ _M_buckets = this->_M_allocate_buckets(__ht._M_bucket_count);
+ _M_bucket_count = __ht._M_bucket_count;
+ }
+ else
+ __builtin_memset(_M_buckets, 0,
+ _M_bucket_count * sizeof(__bucket_type));
+
+ __try
+ {
+ __hashtable_base::operator=(__ht);
+ _M_element_count = __ht._M_element_count;
+ _M_rehash_policy = __ht._M_rehash_policy;
+ __reuse_or_alloc_node_type __roan(_M_begin(), *this);
+ _M_before_begin._M_nxt = nullptr;
+ _M_assign(__ht,
+ [&__roan](const __node_type* __n)
+ { return __roan(__n->_M_v()); });
+ if (__former_buckets)
+ this->_M_deallocate_buckets(__former_buckets,
+ __former_bucket_count);
+ }
+ __catch(...)
+ {
+ if (__former_buckets)
+ {
+ // Restore previous buckets.
+ _M_deallocate_buckets();
+ _M_rehash_policy._M_reset(__former_state);
+ _M_buckets = __former_buckets;
+ _M_bucket_count = __former_bucket_count;
+ }
+ __builtin_memset(_M_buckets, 0,
+ _M_bucket_count * sizeof(__bucket_type));
+ __throw_exception_again;
+ }
+ return *this;
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ template<typename _NodeGenerator>
+ void
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ _M_assign(const _Hashtable& __ht, const _NodeGenerator& __node_gen)
+ {
+ __bucket_type* __buckets = nullptr;
+ if (!_M_buckets)
+ _M_buckets = __buckets = this->_M_allocate_buckets(_M_bucket_count);
+
+ __try
+ {
+ if (!__ht._M_before_begin._M_nxt)
+ return;
+
+ // First deal with the special first node pointed to by
+ // _M_before_begin.
+ __node_type* __ht_n = __ht._M_begin();
+ __node_type* __this_n = __node_gen(__ht_n);
+ this->_M_copy_code(__this_n, __ht_n);
+ _M_before_begin._M_nxt = __this_n;
+ _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin;
+
+ // Then deal with other nodes.
+ __node_base* __prev_n = __this_n;
+ for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
+ {
+ __this_n = __node_gen(__ht_n);
+ __prev_n->_M_nxt = __this_n;
+ this->_M_copy_code(__this_n, __ht_n);
+ size_type __bkt = _M_bucket_index(__this_n);
+ if (!_M_buckets[__bkt])
+ _M_buckets[__bkt] = __prev_n;
+ __prev_n = __this_n;
+ }
+ }
+ __catch(...)
+ {
+ clear();
+ if (__buckets)
+ _M_deallocate_buckets();
+ __throw_exception_again;
+ }
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ void
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ _M_reset() noexcept
+ {
+ _M_rehash_policy._M_reset();
+ _M_bucket_count = 0;
+ _M_buckets = nullptr;
+ _M_before_begin._M_nxt = nullptr;
+ _M_element_count = 0;
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ void
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ _M_move_assign(_Hashtable&& __ht, std::true_type)
+ {
+ this->_M_deallocate_nodes(_M_begin());
+ if (__builtin_expect(_M_bucket_count != 0, true))
+ _M_deallocate_buckets();
+
+ __hashtable_base::operator=(std::move(__ht));
+ _M_rehash_policy = __ht._M_rehash_policy;
+ _M_buckets = __ht._M_buckets;
+ _M_bucket_count = __ht._M_bucket_count;
+ _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
+ _M_element_count = __ht._M_element_count;
+ std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator());
+
+ // Fix buckets containing the _M_before_begin pointers that can't be
+ // moved.
+ if (_M_begin())
+ _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
+ __ht._M_reset();
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ void
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ _M_move_assign(_Hashtable&& __ht, std::false_type)
+ {
+ if (__ht._M_node_allocator() == this->_M_node_allocator())
+ _M_move_assign(std::move(__ht), std::true_type());
+ else
+ {
+ // Can't move memory, move elements then.
+ __bucket_type* __former_buckets = nullptr;
+ size_type __former_bucket_count = _M_bucket_count;
+ const __rehash_state& __former_state = _M_rehash_policy._M_state();
+
+ if (_M_bucket_count != __ht._M_bucket_count)
+ {
+ __former_buckets = _M_buckets;
+ _M_buckets = this->_M_allocate_buckets(__ht._M_bucket_count);
+ _M_bucket_count = __ht._M_bucket_count;
+ }
+ else
+ __builtin_memset(_M_buckets, 0,
+ _M_bucket_count * sizeof(__bucket_type));
+
+ __try
+ {
+ __hashtable_base::operator=(std::move(__ht));
+ _M_element_count = __ht._M_element_count;
+ _M_rehash_policy = __ht._M_rehash_policy;
+ __reuse_or_alloc_node_type __roan(_M_begin(), *this);
+ _M_before_begin._M_nxt = nullptr;
+ _M_assign(__ht,
+ [&__roan](__node_type* __n)
+ { return __roan(std::move_if_noexcept(__n->_M_v())); });
+ __ht.clear();
+ }
+ __catch(...)
+ {
+ if (__former_buckets)
+ {
+ _M_deallocate_buckets();
+ _M_rehash_policy._M_reset(__former_state);
+ _M_buckets = __former_buckets;
+ _M_bucket_count = __former_bucket_count;
+ }
+ __builtin_memset(_M_buckets, 0,
+ _M_bucket_count * sizeof(__bucket_type));
+ __throw_exception_again;
+ }
+ }
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ _Hashtable(const _Hashtable& __ht)
+ : __hashtable_base(__ht),
+ __map_base(__ht),
+ __rehash_base(__ht),
+ __hashtable_alloc(
+ __node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())),
+ _M_buckets(),
+ _M_bucket_count(__ht._M_bucket_count),
+ _M_element_count(__ht._M_element_count),
+ _M_rehash_policy(__ht._M_rehash_policy)
+ {
+ _M_assign(__ht,
+ [this](const __node_type* __n)
+ { return this->_M_allocate_node(__n->_M_v()); });
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ _Hashtable(_Hashtable&& __ht) noexcept
+ : __hashtable_base(__ht),
+ __map_base(__ht),
+ __rehash_base(__ht),
+ __hashtable_alloc(std::move(__ht._M_base_alloc())),
+ _M_buckets(__ht._M_buckets),
+ _M_bucket_count(__ht._M_bucket_count),
+ _M_before_begin(__ht._M_before_begin._M_nxt),
+ _M_element_count(__ht._M_element_count),
+ _M_rehash_policy(__ht._M_rehash_policy)
+ {
+ // Update, if necessary, bucket pointing to before begin that hasn't
+ // moved.
+ if (_M_begin())
+ _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
+ __ht._M_reset();
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ _Hashtable(const _Hashtable& __ht, const allocator_type& __a)
+ : __hashtable_base(__ht),
+ __map_base(__ht),
+ __rehash_base(__ht),
+ __hashtable_alloc(__node_alloc_type(__a)),
+ _M_buckets(),
+ _M_bucket_count(__ht._M_bucket_count),
+ _M_element_count(__ht._M_element_count),
+ _M_rehash_policy(__ht._M_rehash_policy)
+ {
+ _M_assign(__ht,
+ [this](const __node_type* __n)
+ { return this->_M_allocate_node(__n->_M_v()); });
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ _Hashtable(_Hashtable&& __ht, const allocator_type& __a)
+ : __hashtable_base(__ht),
+ __map_base(__ht),
+ __rehash_base(__ht),
+ __hashtable_alloc(__node_alloc_type(__a)),
+ _M_buckets(),
+ _M_bucket_count(__ht._M_bucket_count),
+ _M_element_count(__ht._M_element_count),
+ _M_rehash_policy(__ht._M_rehash_policy)
+ {
+ if (__ht._M_node_allocator() == this->_M_node_allocator())
+ {
+ _M_buckets = __ht._M_buckets;
+ _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
+ // Update, if necessary, bucket pointing to before begin that hasn't
+ // moved.
+ if (_M_begin())
+ _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
+ __ht._M_reset();
+ }
+ else
+ {
+ _M_assign(__ht,
+ [this](__node_type* __n)
+ {
+ return this->_M_allocate_node(
+ std::move_if_noexcept(__n->_M_v()));
+ });
+ __ht.clear();
+ }
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ ~_Hashtable() noexcept
+ {
+ clear();
+ if (_M_buckets)
+ _M_deallocate_buckets();
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ void
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ swap(_Hashtable& __x)
+ noexcept(__node_alloc_traits::_S_nothrow_swap())
+ {
+ // The only base class with member variables is hash_code_base.
+ // We define _Hash_code_base::_M_swap because different
+ // specializations have different members.
+ this->_M_swap(__x);
+
+ std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator());
+ std::swap(_M_rehash_policy, __x._M_rehash_policy);
+ std::swap(_M_buckets, __x._M_buckets);
+ std::swap(_M_bucket_count, __x._M_bucket_count);
+ std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt);
+ std::swap(_M_element_count, __x._M_element_count);
+
+ // Fix buckets containing the _M_before_begin pointers that can't be
+ // swapped.
+ if (_M_begin())
+ _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
+ if (__x._M_begin())
+ __x._M_buckets[__x._M_bucket_index(__x._M_begin())]
+ = &__x._M_before_begin;
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ void
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ __rehash_policy(const _RehashPolicy& __pol)
+ {
+ size_type __n_bkt = __pol._M_bkt_for_elements(_M_element_count);
+ __n_bkt = __pol._M_next_bkt(__n_bkt);
+ if (__n_bkt != _M_bucket_count)
+ _M_rehash(__n_bkt, _M_rehash_policy._M_state());
+ _M_rehash_policy = __pol;
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy,
+ _Traits>::iterator
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ find(const key_type& __k)
+ {
+ if (__builtin_expect(_M_bucket_count == 0, false))
+ return end();
+
+ __hash_code __code = this->_M_hash_code(__k);
+ std::size_t __n = _M_bucket_index(__k, __code);
+ __node_type* __p = _M_find_node(__n, __k, __code);
+ return __p ? iterator(__p) : end();
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy,
+ _Traits>::const_iterator
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ find(const key_type& __k) const
+ {
+ if (__builtin_expect(_M_bucket_count == 0, false))
+ return end();
+
+ __hash_code __code = this->_M_hash_code(__k);
+ std::size_t __n = _M_bucket_index(__k, __code);
+ __node_type* __p = _M_find_node(__n, __k, __code);
+ return __p ? const_iterator(__p) : end();
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy,
+ _Traits>::size_type
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ count(const key_type& __k) const
+ {
+ if (__builtin_expect(_M_bucket_count == 0, false))
+ return 0;
+
+ __hash_code __code = this->_M_hash_code(__k);
+ std::size_t __n = _M_bucket_index(__k, __code);
+ __node_type* __p = _M_bucket_begin(__n);
+ if (!__p)
+ return 0;
+
+ std::size_t __result = 0;
+ for (;; __p = __p->_M_next())
+ {
+ if (this->_M_equals(__k, __code, __p))
+ ++__result;
+ else if (__result)
+ // All equivalent values are next to each other, if we
+ // found a non-equivalent value after an equivalent one it
+ // means that we won't find any more equivalent values.
+ break;
+ if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
+ break;
+ }
+ return __result;
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ std::pair<typename _Hashtable<_Key, _Value, _Alloc,
+ _ExtractKey, _Equal, _H1,
+ _H2, _Hash, _RehashPolicy,
+ _Traits>::iterator,
+ typename _Hashtable<_Key, _Value, _Alloc,
+ _ExtractKey, _Equal, _H1,
+ _H2, _Hash, _RehashPolicy,
+ _Traits>::iterator>
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ equal_range(const key_type& __k)
+ {
+ if (__builtin_expect(_M_bucket_count == 0, false))
+ return std::make_pair(end(), end());
+
+ __hash_code __code = this->_M_hash_code(__k);
+ std::size_t __n = _M_bucket_index(__k, __code);
+ __node_type* __p = _M_find_node(__n, __k, __code);
+
+ if (__p)
+ {
+ __node_type* __p1 = __p->_M_next();
+ while (__p1 && _M_bucket_index(__p1) == __n
+ && this->_M_equals(__k, __code, __p1))
+ __p1 = __p1->_M_next();
+
+ return std::make_pair(iterator(__p), iterator(__p1));
+ }
+ else
+ return std::make_pair(end(), end());
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ std::pair<typename _Hashtable<_Key, _Value, _Alloc,
+ _ExtractKey, _Equal, _H1,
+ _H2, _Hash, _RehashPolicy,
+ _Traits>::const_iterator,
+ typename _Hashtable<_Key, _Value, _Alloc,
+ _ExtractKey, _Equal, _H1,
+ _H2, _Hash, _RehashPolicy,
+ _Traits>::const_iterator>
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ equal_range(const key_type& __k) const
+ {
+ if (__builtin_expect(_M_bucket_count == 0, false))
+ return std::make_pair(end(), end());
+
+ __hash_code __code = this->_M_hash_code(__k);
+ std::size_t __n = _M_bucket_index(__k, __code);
+ __node_type* __p = _M_find_node(__n, __k, __code);
+
+ if (__p)
+ {
+ __node_type* __p1 = __p->_M_next();
+ while (__p1 && _M_bucket_index(__p1) == __n
+ && this->_M_equals(__k, __code, __p1))
+ __p1 = __p1->_M_next();
+
+ return std::make_pair(const_iterator(__p), const_iterator(__p1));
+ }
+ else
+ return std::make_pair(end(), end());
+ }
+
+ // Find the node whose key compares equal to k in the bucket n.
+ // Return nullptr if no node is found.
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
+ _Equal, _H1, _H2, _Hash, _RehashPolicy,
+ _Traits>::__node_base*
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ _M_find_before_node(size_type __n, const key_type& __k,
+ __hash_code __code) const
+ {
+ __node_base* __prev_p = _M_buckets[__n];
+ if (!__prev_p)
+ return nullptr;
+
+ for (__node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt);;
+ __p = __p->_M_next())
+ {
+ if (this->_M_equals(__k, __code, __p))
+ return __prev_p;
+
+ if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
+ break;
+ __prev_p = __p;
+ }
+ return nullptr;
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ void
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ _M_insert_bucket_begin(size_type __bkt, __node_type* __node)
+ {
+ if (_M_buckets[__bkt])
+ {
+ // Bucket is not empty, we just need to insert the new node
+ // after the bucket before begin.
+ __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
+ _M_buckets[__bkt]->_M_nxt = __node;
+ }
+ else
+ {
+ // The bucket is empty, the new node is inserted at the
+ // beginning of the singly-linked list and the bucket will
+ // contain _M_before_begin pointer.
+ __node->_M_nxt = _M_before_begin._M_nxt;
+ _M_before_begin._M_nxt = __node;
+ if (__node->_M_nxt)
+ // We must update former begin bucket that is pointing to
+ // _M_before_begin.
+ _M_buckets[_M_bucket_index(__node->_M_next())] = __node;
+ _M_buckets[__bkt] = &_M_before_begin;
+ }
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ void
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ _M_remove_bucket_begin(size_type __bkt, __node_type* __next,
+ size_type __next_bkt)
+ {
+ if (!__next || __next_bkt != __bkt)
+ {
+ // Bucket is now empty
+ // First update next bucket if any
+ if (__next)
+ _M_buckets[__next_bkt] = _M_buckets[__bkt];
+
+ // Second update before begin node if necessary
+ if (&_M_before_begin == _M_buckets[__bkt])
+ _M_before_begin._M_nxt = __next;
+ _M_buckets[__bkt] = nullptr;
+ }
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
+ _Equal, _H1, _H2, _Hash, _RehashPolicy,
+ _Traits>::__node_base*
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ _M_get_previous_node(size_type __bkt, __node_base* __n)
+ {
+ __node_base* __prev_n = _M_buckets[__bkt];
+ while (__prev_n->_M_nxt != __n)
+ __prev_n = __prev_n->_M_nxt;
+ return __prev_n;
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ template<typename... _Args>
+ std::pair<typename _Hashtable<_Key, _Value, _Alloc,
+ _ExtractKey, _Equal, _H1,
+ _H2, _Hash, _RehashPolicy,
+ _Traits>::iterator, bool>
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ _M_emplace(std::true_type, _Args&&... __args)
+ {
+ // First build the node to get access to the hash code
+ __node_type* __node = this->_M_allocate_node(std::forward<_Args>(__args)...);
+ const key_type& __k = this->_M_extract()(__node->_M_v());
+ __hash_code __code;
+ __try
+ {
+ __code = this->_M_hash_code(__k);
+ }
+ __catch(...)
+ {
+ this->_M_deallocate_node(__node);
+ __throw_exception_again;
+ }
+
+ size_type __bkt = _M_bucket_index(__k, __code);
+ if (__node_type* __p = _M_find_node(__bkt, __k, __code))
+ {
+ // There is already an equivalent node, no insertion
+ this->_M_deallocate_node(__node);
+ return std::make_pair(iterator(__p), false);
+ }
+
+ // Insert the node
+ return std::make_pair(_M_insert_unique_node(__bkt, __code, __node),
+ true);
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ template<typename... _Args>
+ typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy,
+ _Traits>::iterator
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ _M_emplace(const_iterator __hint, std::false_type, _Args&&... __args)
+ {
+ // First build the node to get its hash code.
+ __node_type* __node =
+ this->_M_allocate_node(std::forward<_Args>(__args)...);
+
+ __hash_code __code;
+ __try
+ {
+ __code = this->_M_hash_code(this->_M_extract()(__node->_M_v()));
+ }
+ __catch(...)
+ {
+ this->_M_deallocate_node(__node);
+ __throw_exception_again;
+ }
+
+ return _M_insert_multi_node(__hint._M_cur, __code, __node);
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy,
+ _Traits>::iterator
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ _M_insert_unique_node(size_type __bkt, __hash_code __code,
+ __node_type* __node)
+ {
+ const __rehash_state& __saved_state = _M_rehash_policy._M_state();
+ std::pair<bool, std::size_t> __do_rehash
+ = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
+
+ __try
+ {
+ if (__do_rehash.first)
+ {
+ _M_rehash(__do_rehash.second, __saved_state);
+ __bkt = _M_bucket_index(this->_M_extract()(__node->_M_v()), __code);
+ }
+
+ this->_M_store_code(__node, __code);
+
+ // Always insert at the beginning of the bucket.
+ _M_insert_bucket_begin(__bkt, __node);
+ ++_M_element_count;
+ return iterator(__node);
+ }
+ __catch(...)
+ {
+ this->_M_deallocate_node(__node);
+ __throw_exception_again;
+ }
+ }
+
+ // Insert node, in bucket bkt if no rehash (assumes no element with its key
+ // already present). Take ownership of the node, deallocate it on exception.
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy,
+ _Traits>::iterator
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ _M_insert_multi_node(__node_type* __hint, __hash_code __code,
+ __node_type* __node)
+ {
+ const __rehash_state& __saved_state = _M_rehash_policy._M_state();
+ std::pair<bool, std::size_t> __do_rehash
+ = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
+
+ __try
+ {
+ if (__do_rehash.first)
+ _M_rehash(__do_rehash.second, __saved_state);
+
+ this->_M_store_code(__node, __code);
+ const key_type& __k = this->_M_extract()(__node->_M_v());
+ size_type __bkt = _M_bucket_index(__k, __code);
+
+ // Find the node before an equivalent one or use hint if it exists and
+ // if it is equivalent.
+ __node_base* __prev
+ = __builtin_expect(__hint != nullptr, false)
+ && this->_M_equals(__k, __code, __hint)
+ ? __hint
+ : _M_find_before_node(__bkt, __k, __code);
+ if (__prev)
+ {
+ // Insert after the node before the equivalent one.
+ __node->_M_nxt = __prev->_M_nxt;
+ __prev->_M_nxt = __node;
+ if (__builtin_expect(__prev == __hint, false))
+ // hint might be the last bucket node, in this case we need to
+ // update next bucket.
+ if (__node->_M_nxt
+ && !this->_M_equals(__k, __code, __node->_M_next()))
+ {
+ size_type __next_bkt = _M_bucket_index(__node->_M_next());
+ if (__next_bkt != __bkt)
+ _M_buckets[__next_bkt] = __node;
+ }
+ }
+ else
+ // The inserted node has no equivalent in the
+ // hashtable. We must insert the new node at the
+ // beginning of the bucket to preserve equivalent
+ // elements' relative positions.
+ _M_insert_bucket_begin(__bkt, __node);
+ ++_M_element_count;
+ return iterator(__node);
+ }
+ __catch(...)
+ {
+ this->_M_deallocate_node(__node);
+ __throw_exception_again;
+ }
+ }
+
+ // Insert v if no element with its key is already present.
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ template<typename _Arg, typename _NodeGenerator>
+ std::pair<typename _Hashtable<_Key, _Value, _Alloc,
+ _ExtractKey, _Equal, _H1,
+ _H2, _Hash, _RehashPolicy,
+ _Traits>::iterator, bool>
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ _M_insert(_Arg&& __v, const _NodeGenerator& __node_gen, std::true_type)
+ {
+ const key_type& __k = this->_M_extract()(__v);
+ __hash_code __code = this->_M_hash_code(__k);
+ size_type __bkt = _M_bucket_index(__k, __code);
+
+ __node_type* __n = _M_find_node(__bkt, __k, __code);
+ if (__n)
+ return std::make_pair(iterator(__n), false);
+
+ __n = __node_gen(std::forward<_Arg>(__v));
+ return std::make_pair(_M_insert_unique_node(__bkt, __code, __n), true);
+ }
+
+ // Insert v unconditionally.
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ template<typename _Arg, typename _NodeGenerator>
+ typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy,
+ _Traits>::iterator
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ _M_insert(const_iterator __hint, _Arg&& __v,
+ const _NodeGenerator& __node_gen,
+ std::false_type)
+ {
+ // First compute the hash code so that we don't do anything if it
+ // throws.
+ __hash_code __code = this->_M_hash_code(this->_M_extract()(__v));
+
+ // Second allocate new node so that we don't rehash if it throws.
+ __node_type* __node = __node_gen(std::forward<_Arg>(__v));
+
+ return _M_insert_multi_node(__hint._M_cur, __code, __node);
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy,
+ _Traits>::iterator
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ erase(const_iterator __it)
+ {
+ __node_type* __n = __it._M_cur;
+ std::size_t __bkt = _M_bucket_index(__n);
+
+ // Look for previous node to unlink it from the erased one, this
+ // is why we need buckets to contain the before begin to make
+ // this search fast.
+ __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
+ return _M_erase(__bkt, __prev_n, __n);
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy,
+ _Traits>::iterator
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n)
+ {
+ if (__prev_n == _M_buckets[__bkt])
+ _M_remove_bucket_begin(__bkt, __n->_M_next(),
+ __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
+ else if (__n->_M_nxt)
+ {
+ size_type __next_bkt = _M_bucket_index(__n->_M_next());
+ if (__next_bkt != __bkt)
+ _M_buckets[__next_bkt] = __prev_n;
+ }
+
+ __prev_n->_M_nxt = __n->_M_nxt;
+ iterator __result(__n->_M_next());
+ this->_M_deallocate_node(__n);
+ --_M_element_count;
+
+ return __result;
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy,
+ _Traits>::size_type
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ _M_erase(std::true_type, const key_type& __k)
+ {
+ __hash_code __code = this->_M_hash_code(__k);
+ std::size_t __bkt = _M_bucket_index(__k, __code);
+
+ // Look for the node before the first matching node.
+ __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
+ if (!__prev_n)
+ return 0;
+
+ // We found a matching node, erase it.
+ __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
+ _M_erase(__bkt, __prev_n, __n);
+ return 1;
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy,
+ _Traits>::size_type
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ _M_erase(std::false_type, const key_type& __k)
+ {
+ __hash_code __code = this->_M_hash_code(__k);
+ std::size_t __bkt = _M_bucket_index(__k, __code);
+
+ // Look for the node before the first matching node.
+ __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
+ if (!__prev_n)
+ return 0;
+
+ // _GLIBCXX_RESOLVE_LIB_DEFECTS
+ // 526. Is it undefined if a function in the standard changes
+ // in parameters?
+ // We use one loop to find all matching nodes and another to deallocate
+ // them so that the key stays valid during the first loop. It might be
+ // invalidated indirectly when destroying nodes.
+ __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
+ __node_type* __n_last = __n;
+ std::size_t __n_last_bkt = __bkt;
+ do
+ {
+ __n_last = __n_last->_M_next();
+ if (!__n_last)
+ break;
+ __n_last_bkt = _M_bucket_index(__n_last);
+ }
+ while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last));
+
+ // Deallocate nodes.
+ size_type __result = 0;
+ do
+ {
+ __node_type* __p = __n->_M_next();
+ this->_M_deallocate_node(__n);
+ __n = __p;
+ ++__result;
+ --_M_element_count;
+ }
+ while (__n != __n_last);
+
+ if (__prev_n == _M_buckets[__bkt])
+ _M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
+ else if (__n_last && __n_last_bkt != __bkt)
+ _M_buckets[__n_last_bkt] = __prev_n;
+ __prev_n->_M_nxt = __n_last;
+ return __result;
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy,
+ _Traits>::iterator
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ erase(const_iterator __first, const_iterator __last)
+ {
+ __node_type* __n = __first._M_cur;
+ __node_type* __last_n = __last._M_cur;
+ if (__n == __last_n)
+ return iterator(__n);
+
+ std::size_t __bkt = _M_bucket_index(__n);
+
+ __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
+ bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
+ std::size_t __n_bkt = __bkt;
+ for (;;)
+ {
+ do
+ {
+ __node_type* __tmp = __n;
+ __n = __n->_M_next();
+ this->_M_deallocate_node(__tmp);
+ --_M_element_count;
+ if (!__n)
+ break;
+ __n_bkt = _M_bucket_index(__n);
+ }
+ while (__n != __last_n && __n_bkt == __bkt);
+ if (__is_bucket_begin)
+ _M_remove_bucket_begin(__bkt, __n, __n_bkt);
+ if (__n == __last_n)
+ break;
+ __is_bucket_begin = true;
+ __bkt = __n_bkt;
+ }
+
+ if (__n && (__n_bkt != __bkt || __is_bucket_begin))
+ _M_buckets[__n_bkt] = __prev_n;
+ __prev_n->_M_nxt = __n;
+ return iterator(__n);
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ void
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ clear() noexcept
+ {
+ this->_M_deallocate_nodes(_M_begin());
+ __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type));
+ _M_element_count = 0;
+ _M_before_begin._M_nxt = nullptr;
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ void
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ rehash(size_type __n)
+ {
+ const __rehash_state& __saved_state = _M_rehash_policy._M_state();
+ std::size_t __buckets
+ = std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
+ __n);
+ __buckets = _M_rehash_policy._M_next_bkt(__buckets);
+
+ if (__buckets != _M_bucket_count)
+ _M_rehash(__buckets, __saved_state);
+ else
+ // No rehash, restore previous state to keep a consistent state.
+ _M_rehash_policy._M_reset(__saved_state);
+ }
+
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ void
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ _M_rehash(size_type __n, const __rehash_state& __state)
+ {
+ __try
+ {
+ _M_rehash_aux(__n, __unique_keys());
+ }
+ __catch(...)
+ {
+ // A failure here means that buckets allocation failed. We only
+ // have to restore hash policy previous state.
+ _M_rehash_policy._M_reset(__state);
+ __throw_exception_again;
+ }
+ }
+
+ // Rehash when there is no equivalent elements.
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ void
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ _M_rehash_aux(size_type __n, std::true_type)
+ {
+ __bucket_type* __new_buckets = this->_M_allocate_buckets(__n);
+ __node_type* __p = _M_begin();
+ _M_before_begin._M_nxt = nullptr;
+ std::size_t __bbegin_bkt = 0;
+ while (__p)
+ {
+ __node_type* __next = __p->_M_next();
+ std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
+ if (!__new_buckets[__bkt])
+ {
+ __p->_M_nxt = _M_before_begin._M_nxt;
+ _M_before_begin._M_nxt = __p;
+ __new_buckets[__bkt] = &_M_before_begin;
+ if (__p->_M_nxt)
+ __new_buckets[__bbegin_bkt] = __p;
+ __bbegin_bkt = __bkt;
+ }
+ else
+ {
+ __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
+ __new_buckets[__bkt]->_M_nxt = __p;
+ }
+ __p = __next;
+ }
+
+ if (__builtin_expect(_M_bucket_count != 0, true))
+ _M_deallocate_buckets();
+ _M_bucket_count = __n;
+ _M_buckets = __new_buckets;
+ }
+
+ // Rehash when there can be equivalent elements, preserve their relative
+ // order.
+ template<typename _Key, typename _Value,
+ typename _Alloc, typename _ExtractKey, typename _Equal,
+ typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
+ typename _Traits>
+ void
+ _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
+ _H1, _H2, _Hash, _RehashPolicy, _Traits>::
+ _M_rehash_aux(size_type __n, std::false_type)
+ {
+ __bucket_type* __new_buckets = this->_M_allocate_buckets(__n);
+
+ __node_type* __p = _M_begin();
+ _M_before_begin._M_nxt = nullptr;
+ std::size_t __bbegin_bkt = 0;
+ std::size_t __prev_bkt = 0;
+ __node_type* __prev_p = nullptr;
+ bool __check_bucket = false;
+
+ while (__p)
+ {
+ __node_type* __next = __p->_M_next();
+ std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
+
+ if (__prev_p && __prev_bkt == __bkt)
+ {
+ // Previous insert was already in this bucket, we insert after
+ // the previously inserted one to preserve equivalent elements
+ // relative order.
+ __p->_M_nxt = __prev_p->_M_nxt;
+ __prev_p->_M_nxt = __p;
+
+ // Inserting after a node in a bucket require to check that we
+ // haven't change the bucket last node, in this case next
+ // bucket containing its before begin node must be updated. We
+ // schedule a check as soon as we move out of the sequence of
+ // equivalent nodes to limit the number of checks.
+ __check_bucket = true;
+ }
+ else
+ {
+ if (__check_bucket)
+ {
+ // Check if we shall update the next bucket because of
+ // insertions into __prev_bkt bucket.
+ if (__prev_p->_M_nxt)
+ {
+ std::size_t __next_bkt
+ = __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
+ __n);
+ if (__next_bkt != __prev_bkt)
+ __new_buckets[__next_bkt] = __prev_p;
+ }
+ __check_bucket = false;
+ }
+
+ if (!__new_buckets[__bkt])
+ {
+ __p->_M_nxt = _M_before_begin._M_nxt;
+ _M_before_begin._M_nxt = __p;
+ __new_buckets[__bkt] = &_M_before_begin;
+ if (__p->_M_nxt)
+ __new_buckets[__bbegin_bkt] = __p;
+ __bbegin_bkt = __bkt;
+ }
+ else
+ {
+ __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
+ __new_buckets[__bkt]->_M_nxt = __p;
+ }
+ }
+ __prev_p = __p;
+ __prev_bkt = __bkt;
+ __p = __next;
+ }
+
+ if (__check_bucket && __prev_p->_M_nxt)
+ {
+ std::size_t __next_bkt
+ = __hash_code_base::_M_bucket_index(__prev_p->_M_next(), __n);
+ if (__next_bkt != __prev_bkt)
+ __new_buckets[__next_bkt] = __prev_p;
+ }
+
+ if (__builtin_expect(_M_bucket_count != 0, true))
+ _M_deallocate_buckets();
+ _M_bucket_count = __n;
+ _M_buckets = __new_buckets;
+ }
+
+_GLIBCXX_END_NAMESPACE_VERSION
+} // namespace std
+
+#endif // _HASHTABLE_H