summaryrefslogtreecommitdiffstats
path: root/net/quic/quic_stream_sequencer_buffer_test.cc
diff options
context:
space:
mode:
Diffstat (limited to 'net/quic/quic_stream_sequencer_buffer_test.cc')
-rw-r--r--net/quic/quic_stream_sequencer_buffer_test.cc1055
1 files changed, 1055 insertions, 0 deletions
diff --git a/net/quic/quic_stream_sequencer_buffer_test.cc b/net/quic/quic_stream_sequencer_buffer_test.cc
new file mode 100644
index 0000000..5d9bda8
--- /dev/null
+++ b/net/quic/quic_stream_sequencer_buffer_test.cc
@@ -0,0 +1,1055 @@
+// Copyright (c) 2015 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+#include "net/quic/quic_stream_sequencer_buffer.h"
+
+#include "base/logging.h"
+#include "base/macros.h"
+#include "base/rand_util.h"
+#include "net/quic/test_tools/mock_clock.h"
+#include "net/quic/test_tools/quic_test_utils.h"
+#include "net/test/gtest_util.h"
+#include "testing/gmock/include/gmock/gmock.h"
+#include "testing/gmock_mutant.h"
+#include "testing/gtest/include/gtest/gtest.h"
+
+using std::min;
+
+namespace net {
+
+namespace test {
+
+char GetCharFromIOVecs(size_t offset, iovec iov[], size_t count) {
+ size_t start_offset = 0;
+ for (size_t i = 0; i < count; i++) {
+ if (iov[i].iov_len == 0) {
+ continue;
+ }
+ size_t end_offset = start_offset + iov[i].iov_len - 1;
+ if (offset >= start_offset && offset <= end_offset) {
+ const char* buf = reinterpret_cast<const char*>(iov[i].iov_base);
+ return buf[offset - start_offset];
+ }
+ start_offset += iov[i].iov_len;
+ }
+ LOG(ERROR) << "Could not locate char at offset " << offset << " in " << count
+ << " iovecs";
+ for (size_t i = 0; i < count; ++i) {
+ LOG(ERROR) << " iov[" << i << "].iov_len = " << iov[i].iov_len;
+ }
+ return '\0';
+}
+
+static const size_t kBlockSizeBytes =
+ QuicStreamSequencerBuffer::kBlockSizeBytes;
+typedef QuicStreamSequencerBuffer::BufferBlock BufferBlock;
+typedef QuicStreamSequencerBuffer::Gap Gap;
+typedef QuicStreamSequencerBuffer::FrameInfo FrameInfo;
+
+class QuicStreamSequencerBufferPeer {
+ public:
+ explicit QuicStreamSequencerBufferPeer(QuicStreamSequencerBuffer* buffer)
+ : buffer_(buffer) {}
+
+ // Read from this buffer_->into the given destination buffer_-> up to the
+ // size of the destination. Returns the number of bytes read. Reading from
+ // an empty buffer_->returns 0.
+ size_t Read(char* dest_buffer, size_t size) {
+ iovec dest;
+ dest.iov_base = dest_buffer, dest.iov_len = size;
+ return buffer_->Readv(&dest, 1);
+ }
+
+ // If buffer is empty, the blocks_ array must be empty, which means all
+ // blocks are deallocated.
+ bool CheckEmptyInvariants() {
+ return !buffer_->Empty() || IsBlockArrayEmpty();
+ }
+
+ bool IsBlockArrayEmpty() {
+ size_t count = buffer_->blocks_count_;
+ for (size_t i = 0; i < count; i++) {
+ if (buffer_->blocks_[i] != nullptr) {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ bool CheckInitialState() {
+ EXPECT_TRUE(buffer_->Empty() && buffer_->total_bytes_read_ == 0 &&
+ buffer_->num_bytes_buffered_ == 0);
+ return CheckBufferInvariants();
+ }
+
+ bool CheckBufferInvariants() {
+ QuicStreamOffset data_span =
+ buffer_->gaps_.back().begin_offset - buffer_->total_bytes_read_;
+ bool capacity_sane = data_span <= buffer_->max_buffer_capacity_bytes_ &&
+ data_span >= buffer_->num_bytes_buffered_;
+ if (!capacity_sane) {
+ LOG(ERROR) << "data span is larger than capacity.";
+ LOG(ERROR) << "total read: " << buffer_->total_bytes_read_
+ << " last byte: " << buffer_->gaps_.back().begin_offset;
+ }
+ bool total_read_sane =
+ buffer_->gaps_.front().begin_offset >= buffer_->total_bytes_read_;
+ if (!total_read_sane) {
+ LOG(ERROR) << "read across 1st gap.";
+ }
+ bool read_offset_sane = buffer_->ReadOffset() < kBlockSizeBytes;
+ if (!capacity_sane) {
+ LOG(ERROR) << "read offset go beyond 1st block";
+ }
+ bool block_match_capacity =
+ (buffer_->max_buffer_capacity_bytes_ <=
+ buffer_->blocks_count_ * kBlockSizeBytes) &&
+ (buffer_->max_buffer_capacity_bytes_ >
+ (buffer_->blocks_count_ - 1) * kBlockSizeBytes);
+ if (!capacity_sane) {
+ LOG(ERROR) << "block number not match capcaity.";
+ }
+ bool block_retired_when_empty = CheckEmptyInvariants();
+ if (!block_retired_when_empty) {
+ LOG(ERROR) << "block is not retired after use.";
+ }
+ return capacity_sane && total_read_sane && read_offset_sane &&
+ block_match_capacity && block_retired_when_empty;
+ }
+
+ size_t GetInBlockOffset(QuicStreamOffset offset) {
+ return buffer_->GetInBlockOffset(offset);
+ }
+
+ BufferBlock* GetBlock(size_t index) { return buffer_->blocks_[index]; }
+
+ int GapSize() { return buffer_->gaps_.size(); }
+
+ std::list<Gap> GetGaps() { return buffer_->gaps_; }
+
+ size_t max_buffer_capacity() { return buffer_->max_buffer_capacity_bytes_; }
+
+ size_t ReadableBytes() { return buffer_->ReadableBytes(); }
+
+ std::map<QuicStreamOffset, FrameInfo>* frame_arrival_time_map() {
+ return &(buffer_->frame_arrival_time_map_);
+ }
+
+ void set_total_bytes_read(QuicStreamOffset total_bytes_read) {
+ buffer_->total_bytes_read_ = total_bytes_read;
+ }
+
+ void set_gaps(const std::list<Gap>& gaps) { buffer_->gaps_ = gaps; }
+
+ private:
+ QuicStreamSequencerBuffer* buffer_;
+};
+
+namespace {
+
+class QuicStreamSequencerBufferTest : public testing::Test {
+ public:
+ void SetUp() override { Initialize(); }
+
+ void ResetMaxCapacityBytes(size_t max_capacity_bytes) {
+ max_capacity_bytes_ = max_capacity_bytes;
+ Initialize();
+ }
+
+ protected:
+ void Initialize() {
+ buffer_.reset(new QuicStreamSequencerBuffer(max_capacity_bytes_));
+ helper_.reset(new QuicStreamSequencerBufferPeer(buffer_.get()));
+ }
+
+ // Use 2.5 here to make sure the buffer has more than one block and its end
+ // doesn't align with the end of a block in order to test all the offset
+ // calculation.
+ size_t max_capacity_bytes_ = 2.5 * kBlockSizeBytes;
+
+ MockClock clock_;
+ std::unique_ptr<QuicStreamSequencerBuffer> buffer_;
+ std::unique_ptr<QuicStreamSequencerBufferPeer> helper_;
+ string error_details_;
+};
+
+TEST_F(QuicStreamSequencerBufferTest, InitializationWithDifferentSizes) {
+ const size_t kCapacity = 2 * QuicStreamSequencerBuffer::kBlockSizeBytes;
+ ResetMaxCapacityBytes(kCapacity);
+ EXPECT_EQ(max_capacity_bytes_, helper_->max_buffer_capacity());
+ EXPECT_TRUE(helper_->CheckInitialState());
+
+ const size_t kCapacity1 = 8 * QuicStreamSequencerBuffer::kBlockSizeBytes;
+ ResetMaxCapacityBytes(kCapacity1);
+ EXPECT_EQ(kCapacity1, helper_->max_buffer_capacity());
+ EXPECT_TRUE(helper_->CheckInitialState());
+}
+
+TEST_F(QuicStreamSequencerBufferTest, ClearOnEmpty) {
+ buffer_->Clear();
+ EXPECT_TRUE(helper_->CheckBufferInvariants());
+}
+
+TEST_F(QuicStreamSequencerBufferTest, OnStreamData0length) {
+ size_t written;
+ QuicErrorCode error = buffer_->OnStreamData(800, "", clock_.ApproximateNow(),
+ &written, &error_details_);
+ EXPECT_EQ(error, QUIC_EMPTY_STREAM_FRAME_NO_FIN);
+ EXPECT_TRUE(helper_->CheckBufferInvariants());
+}
+
+TEST_F(QuicStreamSequencerBufferTest, OnStreamDataWithinBlock) {
+ std::string source(1024, 'a');
+ size_t written;
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
+ QuicTime t = clock_.ApproximateNow();
+ EXPECT_EQ(QUIC_NO_ERROR,
+ buffer_->OnStreamData(800, source, t, &written, &error_details_));
+ BufferBlock* block_ptr = helper_->GetBlock(0);
+ for (size_t i = 0; i < source.size(); ++i) {
+ ASSERT_EQ('a', block_ptr->buffer[helper_->GetInBlockOffset(800) + i]);
+ }
+ EXPECT_EQ(2, helper_->GapSize());
+ std::list<Gap> gaps = helper_->GetGaps();
+ EXPECT_EQ(800u, gaps.front().end_offset);
+ EXPECT_EQ(1824u, gaps.back().begin_offset);
+ auto frame_map = helper_->frame_arrival_time_map();
+ EXPECT_EQ(1u, frame_map->size());
+ EXPECT_EQ(800u, frame_map->begin()->first);
+ EXPECT_EQ(t, (*frame_map)[800].timestamp);
+ EXPECT_TRUE(helper_->CheckBufferInvariants());
+}
+
+TEST_F(QuicStreamSequencerBufferTest, OnStreamDataWithOverlap) {
+ std::string source(1024, 'a');
+ // Write something into [800, 1824)
+ size_t written;
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
+ QuicTime t1 = clock_.ApproximateNow();
+ EXPECT_EQ(QUIC_NO_ERROR,
+ buffer_->OnStreamData(800, source, t1, &written, &error_details_));
+ // Try to write to [0, 1024) and [1024, 2048).
+ // But no byte will be written since overlap.
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
+ QuicTime t2 = clock_.ApproximateNow();
+ EXPECT_EQ(QUIC_OVERLAPPING_STREAM_DATA,
+ buffer_->OnStreamData(0, source, t2, &written, &error_details_));
+ EXPECT_EQ(QUIC_OVERLAPPING_STREAM_DATA,
+ buffer_->OnStreamData(1024, source, t2, &written, &error_details_));
+ auto frame_map = helper_->frame_arrival_time_map();
+ EXPECT_EQ(1u, frame_map->size());
+ EXPECT_EQ(t1, (*frame_map)[800].timestamp);
+}
+
+TEST_F(QuicStreamSequencerBufferTest,
+ OnStreamDataOverlapAndDuplicateCornerCases) {
+ std::string source(1024, 'a');
+ // Write something into [800, 1824)
+ size_t written;
+ buffer_->OnStreamData(800, source, clock_.ApproximateNow(), &written,
+ &error_details_);
+ source = std::string(800, 'b');
+ // Try to write to [1, 801), but should fail due to overlapping
+ EXPECT_EQ(QUIC_OVERLAPPING_STREAM_DATA,
+ buffer_->OnStreamData(1, source, clock_.ApproximateNow(), &written,
+ &error_details_));
+ // write to [0, 800)
+ EXPECT_EQ(QUIC_NO_ERROR,
+ buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
+ &error_details_));
+ // Try to write one byte to [1823, 1824), but should count as duplicate
+ std::string one_byte = "c";
+ EXPECT_EQ(QUIC_NO_ERROR,
+ buffer_->OnStreamData(1823, one_byte, clock_.ApproximateNow(),
+ &written, &error_details_));
+ EXPECT_EQ(0u, written);
+ // write one byte to [1824, 1825)
+ EXPECT_EQ(QUIC_NO_ERROR,
+ buffer_->OnStreamData(1824, one_byte, clock_.ApproximateNow(),
+ &written, &error_details_));
+ auto frame_map = helper_->frame_arrival_time_map();
+ EXPECT_EQ(3u, frame_map->size());
+ EXPECT_TRUE(helper_->CheckBufferInvariants());
+}
+
+TEST_F(QuicStreamSequencerBufferTest, OnStreamDataWithoutOverlap) {
+ std::string source(1024, 'a');
+ // Write something into [800, 1824).
+ size_t written;
+ EXPECT_EQ(QUIC_NO_ERROR,
+ buffer_->OnStreamData(800, source, clock_.ApproximateNow(),
+ &written, &error_details_));
+ source = std::string(100, 'b');
+ // Write something into [kBlockSizeBytes * 2 - 20, kBlockSizeBytes * 2 + 80).
+ EXPECT_EQ(QUIC_NO_ERROR,
+ buffer_->OnStreamData(kBlockSizeBytes * 2 - 20, source,
+ clock_.ApproximateNow(), &written,
+ &error_details_));
+ EXPECT_EQ(3, helper_->GapSize());
+ EXPECT_EQ(1024u + 100u, buffer_->BytesBuffered());
+ EXPECT_TRUE(helper_->CheckBufferInvariants());
+}
+
+TEST_F(QuicStreamSequencerBufferTest, OnStreamDataInLongStreamWithOverlap) {
+ // Assume a stream has already buffered almost 4GB.
+ uint64_t total_bytes_read = pow(2, 32) - 1;
+ helper_->set_total_bytes_read(total_bytes_read);
+ helper_->set_gaps(std::list<Gap>(
+ 1, Gap(total_bytes_read, std::numeric_limits<QuicStreamOffset>::max())));
+
+ // Three new out of order frames arrive.
+ const size_t kBytesToWrite = 100;
+ string source(kBytesToWrite, 'a');
+ size_t written;
+ // Frame [2^32 + 500, 2^32 + 600).
+ QuicStreamOffset offset = pow(2, 32) + 500;
+ EXPECT_EQ(QUIC_NO_ERROR,
+ buffer_->OnStreamData(offset, source, clock_.ApproximateNow(),
+ &written, &error_details_));
+ EXPECT_EQ(2, helper_->GapSize());
+
+ // Frame [2^32 + 700, 2^32 + 800).
+ offset = pow(2, 32) + 700;
+ EXPECT_EQ(QUIC_NO_ERROR,
+ buffer_->OnStreamData(offset, source, clock_.ApproximateNow(),
+ &written, &error_details_));
+ EXPECT_EQ(3, helper_->GapSize());
+
+ // Another frame [2^32 + 300, 2^32 + 400).
+ offset = pow(2, 32) + 300;
+ EXPECT_EQ(QUIC_NO_ERROR,
+ buffer_->OnStreamData(offset, source, clock_.ApproximateNow(),
+ &written, &error_details_));
+ EXPECT_EQ(4, helper_->GapSize());
+}
+
+TEST_F(QuicStreamSequencerBufferTest, OnStreamDataTillEnd) {
+ // Write 50 bytes to the end.
+ const size_t kBytesToWrite = 50;
+ std::string source(kBytesToWrite, 'a');
+ size_t written;
+ EXPECT_EQ(QUIC_NO_ERROR,
+ buffer_->OnStreamData(max_capacity_bytes_ - kBytesToWrite, source,
+ clock_.ApproximateNow(), &written,
+ &error_details_));
+ EXPECT_EQ(50u, buffer_->BytesBuffered());
+ EXPECT_TRUE(helper_->CheckBufferInvariants());
+}
+
+TEST_F(QuicStreamSequencerBufferTest, OnStreamDataTillEndCorner) {
+ // Write 1 byte to the end.
+ const size_t kBytesToWrite = 1;
+ std::string source(kBytesToWrite, 'a');
+ size_t written;
+ EXPECT_EQ(QUIC_NO_ERROR,
+ buffer_->OnStreamData(max_capacity_bytes_ - kBytesToWrite, source,
+ clock_.ApproximateNow(), &written,
+ &error_details_));
+ EXPECT_EQ(1u, buffer_->BytesBuffered());
+ EXPECT_TRUE(helper_->CheckBufferInvariants());
+}
+
+TEST_F(QuicStreamSequencerBufferTest, OnStreamDataBeyondCapacity) {
+ std::string source(60, 'a');
+ size_t written;
+ EXPECT_EQ(QUIC_INTERNAL_ERROR,
+ buffer_->OnStreamData(max_capacity_bytes_ - 50, source,
+ clock_.ApproximateNow(), &written,
+ &error_details_));
+ EXPECT_TRUE(helper_->CheckBufferInvariants());
+
+ source = "b";
+ EXPECT_EQ(QUIC_INTERNAL_ERROR,
+ buffer_->OnStreamData(max_capacity_bytes_, source,
+ clock_.ApproximateNow(), &written,
+ &error_details_));
+ EXPECT_TRUE(helper_->CheckBufferInvariants());
+
+ EXPECT_EQ(QUIC_INTERNAL_ERROR,
+ buffer_->OnStreamData(max_capacity_bytes_ * 1000, source,
+ clock_.ApproximateNow(), &written,
+ &error_details_));
+ EXPECT_TRUE(helper_->CheckBufferInvariants());
+ EXPECT_EQ(0u, buffer_->BytesBuffered());
+}
+
+TEST_F(QuicStreamSequencerBufferTest, Readv100Bytes) {
+ std::string source(1024, 'a');
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
+ QuicTime t1 = clock_.ApproximateNow();
+ // Write something into [kBlockSizeBytes, kBlockSizeBytes + 1024).
+ size_t written;
+ buffer_->OnStreamData(kBlockSizeBytes, source, t1, &written, &error_details_);
+ EXPECT_FALSE(buffer_->HasBytesToRead());
+ source = std::string(100, 'b');
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
+ QuicTime t2 = clock_.ApproximateNow();
+ // Write something into [0, 100).
+ buffer_->OnStreamData(0, source, t2, &written, &error_details_);
+ EXPECT_TRUE(buffer_->HasBytesToRead());
+ EXPECT_EQ(2u, helper_->frame_arrival_time_map()->size());
+ // Read into a iovec array with total capacity of 120 bytes.
+ char dest[120];
+ iovec iovecs[3]{iovec{dest, 40}, iovec{dest + 40, 40}, iovec{dest + 80, 40}};
+ size_t read = buffer_->Readv(iovecs, 3);
+ EXPECT_EQ(100u, read);
+ EXPECT_EQ(100u, buffer_->BytesConsumed());
+ EXPECT_EQ(source, std::string(dest, read));
+ EXPECT_EQ(1u, helper_->frame_arrival_time_map()->size());
+ EXPECT_TRUE(helper_->CheckBufferInvariants());
+}
+
+TEST_F(QuicStreamSequencerBufferTest, ReadvAcrossBlocks) {
+ std::string source(kBlockSizeBytes + 50, 'a');
+ // Write 1st block to full and extand 50 bytes to next block.
+ size_t written;
+ buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
+ &error_details_);
+ EXPECT_EQ(source.size(), helper_->ReadableBytes());
+ // Iteratively read 512 bytes from buffer_-> Overwrite dest[] each time.
+ char dest[512];
+ while (helper_->ReadableBytes()) {
+ std::fill(dest, dest + 512, 0);
+ iovec iovecs[2]{iovec{dest, 256}, iovec{dest + 256, 256}};
+ buffer_->Readv(iovecs, 2);
+ }
+ // The last read only reads the rest 50 bytes in 2nd block.
+ EXPECT_EQ(std::string(50, 'a'), std::string(dest, 50));
+ EXPECT_EQ(0, dest[50]) << "Dest[50] shouln't be filled.";
+ EXPECT_EQ(source.size(), buffer_->BytesConsumed());
+ EXPECT_TRUE(buffer_->Empty());
+ EXPECT_TRUE(helper_->CheckBufferInvariants());
+}
+
+TEST_F(QuicStreamSequencerBufferTest, ClearAfterRead) {
+ std::string source(kBlockSizeBytes + 50, 'a');
+ // Write 1st block to full with 'a'.
+ size_t written;
+ buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
+ &error_details_);
+ // Read first 512 bytes from buffer to make space at the beginning.
+ char dest[512]{0};
+ const iovec iov{dest, 512};
+ buffer_->Readv(&iov, 1);
+ // Clear() should make buffer empty while preserving BytesConsumed()
+ buffer_->Clear();
+ EXPECT_TRUE(buffer_->Empty());
+ EXPECT_TRUE(helper_->CheckBufferInvariants());
+}
+
+TEST_F(QuicStreamSequencerBufferTest,
+ OnStreamDataAcrossLastBlockAndFillCapacity) {
+ std::string source(kBlockSizeBytes + 50, 'a');
+ // Write 1st block to full with 'a'.
+ size_t written;
+ buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
+ &error_details_);
+ // Read first 512 bytes from buffer to make space at the beginning.
+ char dest[512]{0};
+ const iovec iov{dest, 512};
+ buffer_->Readv(&iov, 1);
+ EXPECT_EQ(source.size(), written);
+
+ // Write more than half block size of bytes in the last block with 'b', which
+ // will wrap to the beginning and reaches the full capacity.
+ source = std::string(0.5 * kBlockSizeBytes + 512, 'b');
+ EXPECT_EQ(QUIC_NO_ERROR, buffer_->OnStreamData(2 * kBlockSizeBytes, source,
+ clock_.ApproximateNow(),
+ &written, &error_details_));
+ EXPECT_EQ(source.size(), written);
+ EXPECT_TRUE(helper_->CheckBufferInvariants());
+}
+
+TEST_F(QuicStreamSequencerBufferTest,
+ OnStreamDataAcrossLastBlockAndExceedCapacity) {
+ std::string source(kBlockSizeBytes + 50, 'a');
+ // Write 1st block to full.
+ size_t written;
+ buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
+ &error_details_);
+ // Read first 512 bytes from buffer to make space at the beginning.
+ char dest[512]{0};
+ const iovec iov{dest, 512};
+ buffer_->Readv(&iov, 1);
+
+ // Try to write from [max_capacity_bytes_ - 0.5 * kBlockSizeBytes,
+ // max_capacity_bytes_ + 512 + 1). But last bytes exceeds current capacity.
+ source = std::string(0.5 * kBlockSizeBytes + 512 + 1, 'b');
+ EXPECT_EQ(QUIC_INTERNAL_ERROR,
+ buffer_->OnStreamData(2 * kBlockSizeBytes, source,
+ clock_.ApproximateNow(), &written,
+ &error_details_));
+ EXPECT_TRUE(helper_->CheckBufferInvariants());
+}
+
+TEST_F(QuicStreamSequencerBufferTest, ReadvAcrossLastBlock) {
+ // Write to full capacity and read out 512 bytes at beginning and continue
+ // appending 256 bytes.
+ std::string source(max_capacity_bytes_, 'a');
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
+ QuicTime t = clock_.ApproximateNow();
+ size_t written;
+ buffer_->OnStreamData(0, source, t, &written, &error_details_);
+ char dest[512]{0};
+ const iovec iov{dest, 512};
+ buffer_->Readv(&iov, 1);
+ source = std::string(256, 'b');
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
+ QuicTime t2 = clock_.ApproximateNow();
+ buffer_->OnStreamData(max_capacity_bytes_, source, t2, &written,
+ &error_details_);
+ EXPECT_TRUE(helper_->CheckBufferInvariants());
+ EXPECT_EQ(2u, helper_->frame_arrival_time_map()->size());
+
+ // Read all data out.
+ std::unique_ptr<char[]> dest1{new char[max_capacity_bytes_]{0}};
+ const iovec iov1{dest1.get(), max_capacity_bytes_};
+ EXPECT_EQ(max_capacity_bytes_ - 512 + 256, buffer_->Readv(&iov1, 1));
+ EXPECT_EQ(max_capacity_bytes_ + 256, buffer_->BytesConsumed());
+ EXPECT_TRUE(buffer_->Empty());
+ EXPECT_TRUE(helper_->CheckBufferInvariants());
+ EXPECT_EQ(0u, helper_->frame_arrival_time_map()->size());
+}
+
+TEST_F(QuicStreamSequencerBufferTest, ReadvEmpty) {
+ char dest[512]{0};
+ iovec iov{dest, 512};
+ size_t read = buffer_->Readv(&iov, 1);
+ EXPECT_EQ(0u, read);
+ EXPECT_TRUE(helper_->CheckBufferInvariants());
+}
+
+TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionsEmpty) {
+ iovec iovs[2];
+ int iov_count = buffer_->GetReadableRegions(iovs, 2);
+ EXPECT_EQ(0, iov_count);
+ EXPECT_EQ(nullptr, iovs[iov_count].iov_base);
+ EXPECT_EQ(0u, iovs[iov_count].iov_len);
+}
+
+TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionsBlockedByGap) {
+ // Write into [1, 1024).
+ std::string source(1023, 'a');
+ size_t written;
+ buffer_->OnStreamData(1, source, clock_.ApproximateNow(), &written,
+ &error_details_);
+ // Try to get readable regions, but none is there.
+ iovec iovs[2];
+ int iov_count = buffer_->GetReadableRegions(iovs, 2);
+ EXPECT_EQ(0, iov_count);
+}
+
+TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionsTillEndOfBlock) {
+ // Write first block to full with [0, 256) 'a' and the rest 'b' then read out
+ // [0, 256)
+ std::string source(kBlockSizeBytes, 'a');
+ size_t written;
+ buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
+ &error_details_);
+ char dest[256];
+ helper_->Read(dest, 256);
+ // Get readable region from [256, 1024)
+ iovec iovs[2];
+ int iov_count = buffer_->GetReadableRegions(iovs, 2);
+ EXPECT_EQ(1, iov_count);
+ EXPECT_EQ(std::string(kBlockSizeBytes - 256, 'a'),
+ std::string(reinterpret_cast<const char*>(iovs[0].iov_base),
+ iovs[0].iov_len));
+}
+
+TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionsWithinOneBlock) {
+ // Write into [0, 1024) and then read out [0, 256)
+ std::string source(1024, 'a');
+ size_t written;
+ buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
+ &error_details_);
+ char dest[256];
+ helper_->Read(dest, 256);
+ // Get readable region from [256, 1024)
+ iovec iovs[2];
+ int iov_count = buffer_->GetReadableRegions(iovs, 2);
+ EXPECT_EQ(1, iov_count);
+ EXPECT_EQ(std::string(1024 - 256, 'a'),
+ std::string(reinterpret_cast<const char*>(iovs[0].iov_base),
+ iovs[0].iov_len));
+}
+
+TEST_F(QuicStreamSequencerBufferTest,
+ GetReadableRegionsAcrossBlockWithLongIOV) {
+ // Write into [0, 2 * kBlockSizeBytes + 1024) and then read out [0, 1024)
+ std::string source(2 * kBlockSizeBytes + 1024, 'a');
+ size_t written;
+ buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
+ &error_details_);
+ char dest[1024];
+ helper_->Read(dest, 1024);
+
+ iovec iovs[4];
+ int iov_count = buffer_->GetReadableRegions(iovs, 4);
+ EXPECT_EQ(3, iov_count);
+ EXPECT_EQ(kBlockSizeBytes - 1024, iovs[0].iov_len);
+ EXPECT_EQ(kBlockSizeBytes, iovs[1].iov_len);
+ EXPECT_EQ(1024u, iovs[2].iov_len);
+}
+
+TEST_F(QuicStreamSequencerBufferTest,
+ GetReadableRegionsWithMultipleIOVsAcrossEnd) {
+ // Write into [0, 2 * kBlockSizeBytes + 1024) and then read out [0, 1024)
+ // and then append 1024 + 512 bytes.
+ std::string source(2.5 * kBlockSizeBytes - 1024, 'a');
+ size_t written;
+ buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
+ &error_details_);
+ char dest[1024];
+ helper_->Read(dest, 1024);
+ // Write across the end.
+ source = std::string(1024 + 512, 'b');
+ buffer_->OnStreamData(2.5 * kBlockSizeBytes - 1024, source,
+ clock_.ApproximateNow(), &written, &error_details_);
+ // Use short iovec's.
+ iovec iovs[2];
+ int iov_count = buffer_->GetReadableRegions(iovs, 2);
+ EXPECT_EQ(2, iov_count);
+ EXPECT_EQ(kBlockSizeBytes - 1024, iovs[0].iov_len);
+ EXPECT_EQ(kBlockSizeBytes, iovs[1].iov_len);
+ // Use long iovec's and wrap the end of buffer.
+ iovec iovs1[5];
+ EXPECT_EQ(4, buffer_->GetReadableRegions(iovs1, 5));
+ EXPECT_EQ(0.5 * kBlockSizeBytes, iovs1[2].iov_len);
+ EXPECT_EQ(512u, iovs1[3].iov_len);
+ EXPECT_EQ(std::string(512, 'b'),
+ std::string(reinterpret_cast<const char*>(iovs1[3].iov_base),
+ iovs1[3].iov_len));
+}
+
+TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionEmpty) {
+ iovec iov;
+ QuicTime t = QuicTime::Zero();
+ EXPECT_FALSE(buffer_->GetReadableRegion(&iov, &t));
+ EXPECT_EQ(nullptr, iov.iov_base);
+ EXPECT_EQ(0u, iov.iov_len);
+}
+
+TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionBeforeGap) {
+ // Write into [1, 1024).
+ std::string source(1023, 'a');
+ size_t written;
+ buffer_->OnStreamData(1, source, clock_.ApproximateNow(), &written,
+ &error_details_);
+ // GetReadableRegion should return false because range [0,1) hasn't been
+ // filled yet.
+ iovec iov;
+ QuicTime t = QuicTime::Zero();
+ EXPECT_FALSE(buffer_->GetReadableRegion(&iov, &t));
+}
+
+TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionTillEndOfBlock) {
+ // Write into [0, kBlockSizeBytes + 1) and then read out [0, 256)
+ std::string source(kBlockSizeBytes + 1, 'a');
+ size_t written;
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
+ QuicTime t = clock_.ApproximateNow();
+ buffer_->OnStreamData(0, source, t, &written, &error_details_);
+ char dest[256];
+ helper_->Read(dest, 256);
+ // Get readable region from [256, 1024)
+ iovec iov;
+ QuicTime t2 = QuicTime::Zero();
+ EXPECT_TRUE(buffer_->GetReadableRegion(&iov, &t2));
+ EXPECT_EQ(t, t2);
+ EXPECT_EQ(
+ std::string(kBlockSizeBytes - 256, 'a'),
+ std::string(reinterpret_cast<const char*>(iov.iov_base), iov.iov_len));
+}
+
+TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionTillGap) {
+ // Write into [0, kBlockSizeBytes - 1) and then read out [0, 256)
+ std::string source(kBlockSizeBytes - 1, 'a');
+ size_t written;
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
+ QuicTime t = clock_.ApproximateNow();
+ buffer_->OnStreamData(0, source, t, &written, &error_details_);
+ char dest[256];
+ helper_->Read(dest, 256);
+ // Get readable region from [256, 1023)
+ iovec iov;
+ QuicTime t2 = QuicTime::Zero();
+ EXPECT_TRUE(buffer_->GetReadableRegion(&iov, &t2));
+ EXPECT_EQ(t, t2);
+ EXPECT_EQ(
+ std::string(kBlockSizeBytes - 1 - 256, 'a'),
+ std::string(reinterpret_cast<const char*>(iov.iov_base), iov.iov_len));
+}
+
+TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionByArrivalTime) {
+ // Write into [0, kBlockSizeBytes - 100) and then read out [0, 256)
+ std::string source(kBlockSizeBytes - 100, 'a');
+ size_t written;
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
+ QuicTime t = clock_.ApproximateNow();
+ buffer_->OnStreamData(0, source, t, &written, &error_details_);
+ char dest[256];
+ helper_->Read(dest, 256);
+ // Write into [kBlockSizeBytes - 100, kBlockSizeBytes - 50)] in same time
+ std::string source2(50, 'b');
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
+ buffer_->OnStreamData(kBlockSizeBytes - 100, source2, t, &written,
+ &error_details_);
+
+ // Write into [kBlockSizeBytes - 50, kBlockSizeBytes)] in another time
+ std::string source3(50, 'c');
+ clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
+ QuicTime t3 = clock_.ApproximateNow();
+ buffer_->OnStreamData(kBlockSizeBytes - 50, source3, t3, &written,
+ &error_details_);
+
+ // Get readable region from [256, 1024 - 50)
+ iovec iov;
+ QuicTime t4 = QuicTime::Zero();
+ EXPECT_TRUE(buffer_->GetReadableRegion(&iov, &t4));
+ EXPECT_EQ(t, t4);
+ EXPECT_EQ(
+ std::string(kBlockSizeBytes - 100 - 256, 'a') + source2,
+ std::string(reinterpret_cast<const char*>(iov.iov_base), iov.iov_len));
+}
+
+TEST_F(QuicStreamSequencerBufferTest, MarkConsumedInOneBlock) {
+ // Write into [0, 1024) and then read out [0, 256)
+ std::string source(1024, 'a');
+ size_t written;
+ buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
+ &error_details_);
+ char dest[256];
+ helper_->Read(dest, 256);
+
+ EXPECT_TRUE(buffer_->MarkConsumed(512));
+ EXPECT_EQ(256u + 512u, buffer_->BytesConsumed());
+ EXPECT_EQ(256u, helper_->ReadableBytes());
+ EXPECT_EQ(1u, helper_->frame_arrival_time_map()->size());
+ buffer_->MarkConsumed(256);
+ EXPECT_EQ(0u, helper_->frame_arrival_time_map()->size());
+ EXPECT_TRUE(buffer_->Empty());
+ EXPECT_TRUE(helper_->CheckBufferInvariants());
+}
+
+TEST_F(QuicStreamSequencerBufferTest, MarkConsumedNotEnoughBytes) {
+ // Write into [0, 1024) and then read out [0, 256)
+ std::string source(1024, 'a');
+ size_t written;
+ QuicTime t = clock_.ApproximateNow();
+ buffer_->OnStreamData(0, source, t, &written, &error_details_);
+ char dest[256];
+ helper_->Read(dest, 256);
+
+ // Consume 1st 512 bytes
+ EXPECT_TRUE(buffer_->MarkConsumed(512));
+ EXPECT_EQ(256u + 512u, buffer_->BytesConsumed());
+ EXPECT_EQ(256u, helper_->ReadableBytes());
+ // Try to consume one bytes more than available. Should return false.
+ EXPECT_FALSE(buffer_->MarkConsumed(257));
+ EXPECT_EQ(256u + 512u, buffer_->BytesConsumed());
+ QuicTime t2 = QuicTime::Zero();
+ iovec iov;
+ EXPECT_TRUE(buffer_->GetReadableRegion(&iov, &t2));
+ EXPECT_EQ(t, t2);
+ EXPECT_TRUE(helper_->CheckBufferInvariants());
+}
+
+TEST_F(QuicStreamSequencerBufferTest, MarkConsumedAcrossBlock) {
+ // Write into [0, 2 * kBlockSizeBytes + 1024) and then read out [0, 1024)
+ std::string source(2 * kBlockSizeBytes + 1024, 'a');
+ size_t written;
+ buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
+ &error_details_);
+ char dest[1024];
+ helper_->Read(dest, 1024);
+
+ buffer_->MarkConsumed(2 * kBlockSizeBytes);
+ EXPECT_EQ(source.size(), buffer_->BytesConsumed());
+ EXPECT_TRUE(buffer_->Empty());
+ EXPECT_TRUE(helper_->CheckBufferInvariants());
+}
+
+TEST_F(QuicStreamSequencerBufferTest, MarkConsumedAcrossEnd) {
+ // Write into [0, 2.5 * kBlockSizeBytes - 1024) and then read out [0, 1024)
+ // and then append 1024 + 512 bytes.
+ std::string source(2.5 * kBlockSizeBytes - 1024, 'a');
+ size_t written;
+ buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
+ &error_details_);
+ char dest[1024];
+ helper_->Read(dest, 1024);
+ source = std::string(1024 + 512, 'b');
+ buffer_->OnStreamData(2.5 * kBlockSizeBytes - 1024, source,
+ clock_.ApproximateNow(), &written, &error_details_);
+ EXPECT_EQ(1024u, buffer_->BytesConsumed());
+
+ // Consume to the end of 2nd block.
+ buffer_->MarkConsumed(2 * kBlockSizeBytes - 1024);
+ EXPECT_EQ(2 * kBlockSizeBytes, buffer_->BytesConsumed());
+ // Consume across the physical end of buffer
+ buffer_->MarkConsumed(0.5 * kBlockSizeBytes + 500);
+ EXPECT_EQ(max_capacity_bytes_ + 500, buffer_->BytesConsumed());
+ EXPECT_EQ(12u, helper_->ReadableBytes());
+ // Consume to the logical end of buffer
+ buffer_->MarkConsumed(12);
+ EXPECT_EQ(max_capacity_bytes_ + 512, buffer_->BytesConsumed());
+ EXPECT_TRUE(buffer_->Empty());
+ EXPECT_TRUE(helper_->CheckBufferInvariants());
+}
+
+TEST_F(QuicStreamSequencerBufferTest, FlushBufferedFrames) {
+ // Write into [0, 2.5 * kBlockSizeBytes - 1024) and then read out [0, 1024).
+ std::string source(max_capacity_bytes_ - 1024, 'a');
+ size_t written;
+ buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
+ &error_details_);
+ char dest[1024];
+ helper_->Read(dest, 1024);
+ EXPECT_EQ(1024u, buffer_->BytesConsumed());
+ // Write [1024, 512) to the physical beginning.
+ source = std::string(512, 'b');
+ buffer_->OnStreamData(max_capacity_bytes_, source, clock_.ApproximateNow(),
+ &written, &error_details_);
+ EXPECT_EQ(512u, written);
+ EXPECT_EQ(max_capacity_bytes_ - 1024 + 512, buffer_->FlushBufferedFrames());
+ EXPECT_EQ(max_capacity_bytes_ + 512, buffer_->BytesConsumed());
+ EXPECT_TRUE(buffer_->Empty());
+ EXPECT_TRUE(helper_->CheckBufferInvariants());
+ // Clear buffer at this point should still preserve BytesConsumed().
+ buffer_->Clear();
+ EXPECT_EQ(max_capacity_bytes_ + 512, buffer_->BytesConsumed());
+ EXPECT_TRUE(helper_->CheckBufferInvariants());
+}
+
+class QuicStreamSequencerBufferRandomIOTest
+ : public QuicStreamSequencerBufferTest {
+ public:
+ typedef std::pair<QuicStreamOffset, size_t> OffsetSizePair;
+
+ void SetUp() override {
+ // Test against a larger capacity then above tests. Also make sure the last
+ // block is partially available to use.
+ max_capacity_bytes_ = 6.25 * kBlockSizeBytes;
+ // Stream to be buffered should be larger than the capacity to test wrap
+ // around.
+ bytes_to_buffer_ = 2 * max_capacity_bytes_;
+ Initialize();
+
+ uint32_t seed = base::RandInt(0, std::numeric_limits<int32_t>::max());
+ LOG(INFO) << "RandomWriteAndProcessInPlace test seed is " << seed;
+ rng_.set_seed(seed);
+ }
+
+ // Create an out-of-order source stream with given size to populate
+ // shuffled_buf_.
+ void CreateSourceAndShuffle(size_t max_chunk_size_bytes) {
+ max_chunk_size_bytes_ = max_chunk_size_bytes;
+ std::unique_ptr<OffsetSizePair[]> chopped_stream(
+ new OffsetSizePair[bytes_to_buffer_]);
+
+ // Split stream into small chunks with random length. chopped_stream will be
+ // populated with segmented stream chunks.
+ size_t start_chopping_offset = 0;
+ size_t iterations = 0;
+ while (start_chopping_offset < bytes_to_buffer_) {
+ size_t max_chunk = min<size_t>(max_chunk_size_bytes_,
+ bytes_to_buffer_ - start_chopping_offset);
+ size_t chunk_size = rng_.RandUint64() % max_chunk + 1;
+ chopped_stream[iterations] =
+ OffsetSizePair(start_chopping_offset, chunk_size);
+ start_chopping_offset += chunk_size;
+ ++iterations;
+ }
+ DCHECK(start_chopping_offset == bytes_to_buffer_);
+ size_t chunk_num = iterations;
+
+ // Randomly change the sequence of in-ordered OffsetSizePairs to make a
+ // out-of-order array of OffsetSizePairs.
+ for (int i = chunk_num - 1; i >= 0; --i) {
+ size_t random_idx = rng_.RandUint64() % (i + 1);
+ DVLOG(1) << "chunk offset " << chopped_stream[random_idx].first
+ << " size " << chopped_stream[random_idx].second;
+ shuffled_buf_.push_front(chopped_stream[random_idx]);
+ chopped_stream[random_idx] = chopped_stream[i];
+ }
+ }
+
+ // Write the currently first chunk of data in the out-of-order stream into
+ // QuicStreamSequencerBuffer. If current chuck cannot be written into buffer
+ // because it goes beyond current capacity, move it to the end of
+ // shuffled_buf_ and write it later.
+ void WriteNextChunkToBuffer() {
+ OffsetSizePair& chunk = shuffled_buf_.front();
+ QuicStreamOffset offset = chunk.first;
+ const size_t num_to_write = chunk.second;
+ std::unique_ptr<char[]> write_buf{new char[max_chunk_size_bytes_]};
+ for (size_t i = 0; i < num_to_write; ++i) {
+ write_buf[i] = (offset + i) % 256;
+ }
+ base::StringPiece string_piece_w(write_buf.get(), num_to_write);
+ size_t written;
+ auto result =
+ buffer_->OnStreamData(offset, string_piece_w, clock_.ApproximateNow(),
+ &written, &error_details_);
+ if (result == QUIC_NO_ERROR) {
+ shuffled_buf_.pop_front();
+ total_bytes_written_ += num_to_write;
+ } else {
+ // This chunk offset exceeds window size.
+ shuffled_buf_.push_back(chunk);
+ shuffled_buf_.pop_front();
+ }
+ DVLOG(1) << " write at offset: " << offset
+ << " len to write: " << num_to_write << " write result: " << result
+ << " left over: " << shuffled_buf_.size();
+ }
+
+ protected:
+ std::list<OffsetSizePair> shuffled_buf_;
+ size_t max_chunk_size_bytes_;
+ QuicStreamOffset bytes_to_buffer_;
+ size_t total_bytes_written_ = 0;
+ size_t total_bytes_read_ = 0;
+ SimpleRandom rng_;
+};
+
+TEST_F(QuicStreamSequencerBufferRandomIOTest, RandomWriteAndReadv) {
+ // Set kMaxReadSize larger than kBlockSizeBytes to test both small and large
+ // read.
+ const size_t kMaxReadSize = kBlockSizeBytes * 2;
+ // kNumReads is larger than 1 to test how multiple read destinations work.
+ const size_t kNumReads = 2;
+ // Since write and read operation have equal possibility to be called. Bytes
+ // to be written into and read out of should roughly the same.
+ const size_t kMaxWriteSize = kNumReads * kMaxReadSize;
+ size_t iterations = 0;
+
+ CreateSourceAndShuffle(kMaxWriteSize);
+
+ while ((!shuffled_buf_.empty() || total_bytes_read_ < bytes_to_buffer_) &&
+ iterations <= 2 * bytes_to_buffer_) {
+ uint8_t next_action =
+ shuffled_buf_.empty() ? uint8_t{1} : rng_.RandUint64() % 2;
+ DVLOG(1) << "iteration: " << iterations;
+ switch (next_action) {
+ case 0: { // write
+ WriteNextChunkToBuffer();
+ ASSERT_TRUE(helper_->CheckBufferInvariants());
+ break;
+ }
+ case 1: { // readv
+ std::unique_ptr<char[][kMaxReadSize]> read_buf{
+ new char[kNumReads][kMaxReadSize]};
+ iovec dest_iov[kNumReads];
+ size_t num_to_read = 0;
+ for (size_t i = 0; i < kNumReads; ++i) {
+ dest_iov[i].iov_base =
+ reinterpret_cast<void*>(const_cast<char*>(read_buf[i]));
+ dest_iov[i].iov_len = rng_.RandUint64() % kMaxReadSize;
+ num_to_read += dest_iov[i].iov_len;
+ }
+ size_t actually_read = buffer_->Readv(dest_iov, kNumReads);
+ ASSERT_LE(actually_read, num_to_read);
+ DVLOG(1) << " read from offset: " << total_bytes_read_
+ << " size: " << num_to_read
+ << " actual read: " << actually_read;
+ for (size_t i = 0; i < actually_read; ++i) {
+ char ch = (i + total_bytes_read_) % 256;
+ ASSERT_EQ(ch, GetCharFromIOVecs(i, dest_iov, kNumReads))
+ << " at iteration " << iterations;
+ }
+ total_bytes_read_ += actually_read;
+ ASSERT_EQ(total_bytes_read_, buffer_->BytesConsumed());
+ ASSERT_TRUE(helper_->CheckBufferInvariants());
+ break;
+ }
+ }
+ ++iterations;
+ ASSERT_LE(total_bytes_read_, total_bytes_written_);
+ }
+ EXPECT_LT(iterations, bytes_to_buffer_) << "runaway test";
+ EXPECT_LE(bytes_to_buffer_, total_bytes_read_) << "iterations: "
+ << iterations;
+ EXPECT_LE(bytes_to_buffer_, total_bytes_written_);
+}
+
+TEST_F(QuicStreamSequencerBufferRandomIOTest, RandomWriteAndConsumeInPlace) {
+ // The value 4 is chosen such that the max write size is no larger than the
+ // maximum buffer capacity.
+ const size_t kMaxNumReads = 4;
+ // Adjust write amount be roughly equal to that GetReadableRegions() can get.
+ const size_t kMaxWriteSize = kMaxNumReads * kBlockSizeBytes;
+ ASSERT_LE(kMaxWriteSize, max_capacity_bytes_);
+ size_t iterations = 0;
+
+ CreateSourceAndShuffle(kMaxWriteSize);
+
+ while ((!shuffled_buf_.empty() || total_bytes_read_ < bytes_to_buffer_) &&
+ iterations <= 2 * bytes_to_buffer_) {
+ uint8_t next_action =
+ shuffled_buf_.empty() ? uint8_t{1} : rng_.RandUint64() % 2;
+ DVLOG(1) << "iteration: " << iterations;
+ switch (next_action) {
+ case 0: { // write
+ WriteNextChunkToBuffer();
+ ASSERT_TRUE(helper_->CheckBufferInvariants());
+ break;
+ }
+ case 1: { // GetReadableRegions and then MarkConsumed
+ size_t num_read = rng_.RandUint64() % kMaxNumReads + 1;
+ iovec dest_iov[kMaxNumReads];
+ ASSERT_TRUE(helper_->CheckBufferInvariants());
+ size_t actually_num_read =
+ buffer_->GetReadableRegions(dest_iov, num_read);
+ ASSERT_LE(actually_num_read, num_read);
+ size_t avail_bytes = 0;
+ for (size_t i = 0; i < actually_num_read; ++i) {
+ avail_bytes += dest_iov[i].iov_len;
+ }
+ // process random number of bytes (check the value of each byte).
+ size_t bytes_to_process = rng_.RandUint64() % (avail_bytes + 1);
+ size_t bytes_processed = 0;
+ for (size_t i = 0; i < actually_num_read; ++i) {
+ size_t bytes_in_block = min<size_t>(
+ bytes_to_process - bytes_processed, dest_iov[i].iov_len);
+ if (bytes_in_block == 0) {
+ break;
+ }
+ for (size_t j = 0; j < bytes_in_block; ++j) {
+ ASSERT_LE(bytes_processed, bytes_to_process);
+ char char_expected =
+ (buffer_->BytesConsumed() + bytes_processed) % 256;
+ ASSERT_EQ(char_expected,
+ reinterpret_cast<const char*>(dest_iov[i].iov_base)[j])
+ << " at iteration " << iterations;
+ ++bytes_processed;
+ }
+ }
+
+ buffer_->MarkConsumed(bytes_processed);
+
+ DVLOG(1) << "iteration " << iterations << ": try to get " << num_read
+ << " readable regions, actually get " << actually_num_read
+ << " from offset: " << total_bytes_read_
+ << "\nprocesse bytes: " << bytes_processed;
+ total_bytes_read_ += bytes_processed;
+ ASSERT_EQ(total_bytes_read_, buffer_->BytesConsumed());
+ ASSERT_TRUE(helper_->CheckBufferInvariants());
+ break;
+ }
+ }
+ ++iterations;
+ ASSERT_LE(total_bytes_read_, total_bytes_written_);
+ }
+ EXPECT_LT(iterations, bytes_to_buffer_) << "runaway test";
+ EXPECT_LE(bytes_to_buffer_, total_bytes_read_) << "iterations: "
+ << iterations;
+ EXPECT_LE(bytes_to_buffer_, total_bytes_written_);
+}
+
+} // anonymous namespace
+
+} // namespace test
+
+} // namespace net