summaryrefslogtreecommitdiffstats
path: root/net/quic/quic_stream_sequencer_buffer_test.cc
blob: 5d9bda828e4c14c692a5f2bd6284622a046d701a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
// Copyright (c) 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/quic_stream_sequencer_buffer.h"

#include "base/logging.h"
#include "base/macros.h"
#include "base/rand_util.h"
#include "net/quic/test_tools/mock_clock.h"
#include "net/quic/test_tools/quic_test_utils.h"
#include "net/test/gtest_util.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gmock_mutant.h"
#include "testing/gtest/include/gtest/gtest.h"

using std::min;

namespace net {

namespace test {

char GetCharFromIOVecs(size_t offset, iovec iov[], size_t count) {
  size_t start_offset = 0;
  for (size_t i = 0; i < count; i++) {
    if (iov[i].iov_len == 0) {
      continue;
    }
    size_t end_offset = start_offset + iov[i].iov_len - 1;
    if (offset >= start_offset && offset <= end_offset) {
      const char* buf = reinterpret_cast<const char*>(iov[i].iov_base);
      return buf[offset - start_offset];
    }
    start_offset += iov[i].iov_len;
  }
  LOG(ERROR) << "Could not locate char at offset " << offset << " in " << count
             << " iovecs";
  for (size_t i = 0; i < count; ++i) {
    LOG(ERROR) << "  iov[" << i << "].iov_len = " << iov[i].iov_len;
  }
  return '\0';
}

static const size_t kBlockSizeBytes =
    QuicStreamSequencerBuffer::kBlockSizeBytes;
typedef QuicStreamSequencerBuffer::BufferBlock BufferBlock;
typedef QuicStreamSequencerBuffer::Gap Gap;
typedef QuicStreamSequencerBuffer::FrameInfo FrameInfo;

class QuicStreamSequencerBufferPeer {
 public:
  explicit QuicStreamSequencerBufferPeer(QuicStreamSequencerBuffer* buffer)
      : buffer_(buffer) {}

  // Read from this buffer_->into the given destination buffer_-> up to the
  // size of the destination. Returns the number of bytes read. Reading from
  // an empty buffer_->returns 0.
  size_t Read(char* dest_buffer, size_t size) {
    iovec dest;
    dest.iov_base = dest_buffer, dest.iov_len = size;
    return buffer_->Readv(&dest, 1);
  }

  // If buffer is empty, the blocks_ array must be empty, which means all
  // blocks are deallocated.
  bool CheckEmptyInvariants() {
    return !buffer_->Empty() || IsBlockArrayEmpty();
  }

  bool IsBlockArrayEmpty() {
    size_t count = buffer_->blocks_count_;
    for (size_t i = 0; i < count; i++) {
      if (buffer_->blocks_[i] != nullptr) {
        return false;
      }
    }
    return true;
  }

  bool CheckInitialState() {
    EXPECT_TRUE(buffer_->Empty() && buffer_->total_bytes_read_ == 0 &&
                buffer_->num_bytes_buffered_ == 0);
    return CheckBufferInvariants();
  }

  bool CheckBufferInvariants() {
    QuicStreamOffset data_span =
        buffer_->gaps_.back().begin_offset - buffer_->total_bytes_read_;
    bool capacity_sane = data_span <= buffer_->max_buffer_capacity_bytes_ &&
                         data_span >= buffer_->num_bytes_buffered_;
    if (!capacity_sane) {
      LOG(ERROR) << "data span is larger than capacity.";
      LOG(ERROR) << "total read: " << buffer_->total_bytes_read_
                 << " last byte: " << buffer_->gaps_.back().begin_offset;
    }
    bool total_read_sane =
        buffer_->gaps_.front().begin_offset >= buffer_->total_bytes_read_;
    if (!total_read_sane) {
      LOG(ERROR) << "read across 1st gap.";
    }
    bool read_offset_sane = buffer_->ReadOffset() < kBlockSizeBytes;
    if (!capacity_sane) {
      LOG(ERROR) << "read offset go beyond 1st block";
    }
    bool block_match_capacity =
        (buffer_->max_buffer_capacity_bytes_ <=
         buffer_->blocks_count_ * kBlockSizeBytes) &&
        (buffer_->max_buffer_capacity_bytes_ >
         (buffer_->blocks_count_ - 1) * kBlockSizeBytes);
    if (!capacity_sane) {
      LOG(ERROR) << "block number not match capcaity.";
    }
    bool block_retired_when_empty = CheckEmptyInvariants();
    if (!block_retired_when_empty) {
      LOG(ERROR) << "block is not retired after use.";
    }
    return capacity_sane && total_read_sane && read_offset_sane &&
           block_match_capacity && block_retired_when_empty;
  }

  size_t GetInBlockOffset(QuicStreamOffset offset) {
    return buffer_->GetInBlockOffset(offset);
  }

  BufferBlock* GetBlock(size_t index) { return buffer_->blocks_[index]; }

  int GapSize() { return buffer_->gaps_.size(); }

  std::list<Gap> GetGaps() { return buffer_->gaps_; }

  size_t max_buffer_capacity() { return buffer_->max_buffer_capacity_bytes_; }

  size_t ReadableBytes() { return buffer_->ReadableBytes(); }

  std::map<QuicStreamOffset, FrameInfo>* frame_arrival_time_map() {
    return &(buffer_->frame_arrival_time_map_);
  }

  void set_total_bytes_read(QuicStreamOffset total_bytes_read) {
    buffer_->total_bytes_read_ = total_bytes_read;
  }

  void set_gaps(const std::list<Gap>& gaps) { buffer_->gaps_ = gaps; }

 private:
  QuicStreamSequencerBuffer* buffer_;
};

namespace {

class QuicStreamSequencerBufferTest : public testing::Test {
 public:
  void SetUp() override { Initialize(); }

  void ResetMaxCapacityBytes(size_t max_capacity_bytes) {
    max_capacity_bytes_ = max_capacity_bytes;
    Initialize();
  }

 protected:
  void Initialize() {
    buffer_.reset(new QuicStreamSequencerBuffer(max_capacity_bytes_));
    helper_.reset(new QuicStreamSequencerBufferPeer(buffer_.get()));
  }

  // Use 2.5 here to make sure the buffer has more than one block and its end
  // doesn't align with the end of a block in order to test all the offset
  // calculation.
  size_t max_capacity_bytes_ = 2.5 * kBlockSizeBytes;

  MockClock clock_;
  std::unique_ptr<QuicStreamSequencerBuffer> buffer_;
  std::unique_ptr<QuicStreamSequencerBufferPeer> helper_;
  string error_details_;
};

TEST_F(QuicStreamSequencerBufferTest, InitializationWithDifferentSizes) {
  const size_t kCapacity = 2 * QuicStreamSequencerBuffer::kBlockSizeBytes;
  ResetMaxCapacityBytes(kCapacity);
  EXPECT_EQ(max_capacity_bytes_, helper_->max_buffer_capacity());
  EXPECT_TRUE(helper_->CheckInitialState());

  const size_t kCapacity1 = 8 * QuicStreamSequencerBuffer::kBlockSizeBytes;
  ResetMaxCapacityBytes(kCapacity1);
  EXPECT_EQ(kCapacity1, helper_->max_buffer_capacity());
  EXPECT_TRUE(helper_->CheckInitialState());
}

TEST_F(QuicStreamSequencerBufferTest, ClearOnEmpty) {
  buffer_->Clear();
  EXPECT_TRUE(helper_->CheckBufferInvariants());
}

TEST_F(QuicStreamSequencerBufferTest, OnStreamData0length) {
  size_t written;
  QuicErrorCode error = buffer_->OnStreamData(800, "", clock_.ApproximateNow(),
                                              &written, &error_details_);
  EXPECT_EQ(error, QUIC_EMPTY_STREAM_FRAME_NO_FIN);
  EXPECT_TRUE(helper_->CheckBufferInvariants());
}

TEST_F(QuicStreamSequencerBufferTest, OnStreamDataWithinBlock) {
  std::string source(1024, 'a');
  size_t written;
  clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
  QuicTime t = clock_.ApproximateNow();
  EXPECT_EQ(QUIC_NO_ERROR,
            buffer_->OnStreamData(800, source, t, &written, &error_details_));
  BufferBlock* block_ptr = helper_->GetBlock(0);
  for (size_t i = 0; i < source.size(); ++i) {
    ASSERT_EQ('a', block_ptr->buffer[helper_->GetInBlockOffset(800) + i]);
  }
  EXPECT_EQ(2, helper_->GapSize());
  std::list<Gap> gaps = helper_->GetGaps();
  EXPECT_EQ(800u, gaps.front().end_offset);
  EXPECT_EQ(1824u, gaps.back().begin_offset);
  auto frame_map = helper_->frame_arrival_time_map();
  EXPECT_EQ(1u, frame_map->size());
  EXPECT_EQ(800u, frame_map->begin()->first);
  EXPECT_EQ(t, (*frame_map)[800].timestamp);
  EXPECT_TRUE(helper_->CheckBufferInvariants());
}

TEST_F(QuicStreamSequencerBufferTest, OnStreamDataWithOverlap) {
  std::string source(1024, 'a');
  // Write something into [800, 1824)
  size_t written;
  clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
  QuicTime t1 = clock_.ApproximateNow();
  EXPECT_EQ(QUIC_NO_ERROR,
            buffer_->OnStreamData(800, source, t1, &written, &error_details_));
  // Try to write to [0, 1024) and [1024, 2048).
  // But no byte will be written since overlap.
  clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
  QuicTime t2 = clock_.ApproximateNow();
  EXPECT_EQ(QUIC_OVERLAPPING_STREAM_DATA,
            buffer_->OnStreamData(0, source, t2, &written, &error_details_));
  EXPECT_EQ(QUIC_OVERLAPPING_STREAM_DATA,
            buffer_->OnStreamData(1024, source, t2, &written, &error_details_));
  auto frame_map = helper_->frame_arrival_time_map();
  EXPECT_EQ(1u, frame_map->size());
  EXPECT_EQ(t1, (*frame_map)[800].timestamp);
}

TEST_F(QuicStreamSequencerBufferTest,
       OnStreamDataOverlapAndDuplicateCornerCases) {
  std::string source(1024, 'a');
  // Write something into [800, 1824)
  size_t written;
  buffer_->OnStreamData(800, source, clock_.ApproximateNow(), &written,
                        &error_details_);
  source = std::string(800, 'b');
  // Try to write to [1, 801), but should fail due to overlapping
  EXPECT_EQ(QUIC_OVERLAPPING_STREAM_DATA,
            buffer_->OnStreamData(1, source, clock_.ApproximateNow(), &written,
                                  &error_details_));
  // write to [0, 800)
  EXPECT_EQ(QUIC_NO_ERROR,
            buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
                                  &error_details_));
  // Try to write one byte to [1823, 1824), but should count as duplicate
  std::string one_byte = "c";
  EXPECT_EQ(QUIC_NO_ERROR,
            buffer_->OnStreamData(1823, one_byte, clock_.ApproximateNow(),
                                  &written, &error_details_));
  EXPECT_EQ(0u, written);
  // write one byte to [1824, 1825)
  EXPECT_EQ(QUIC_NO_ERROR,
            buffer_->OnStreamData(1824, one_byte, clock_.ApproximateNow(),
                                  &written, &error_details_));
  auto frame_map = helper_->frame_arrival_time_map();
  EXPECT_EQ(3u, frame_map->size());
  EXPECT_TRUE(helper_->CheckBufferInvariants());
}

TEST_F(QuicStreamSequencerBufferTest, OnStreamDataWithoutOverlap) {
  std::string source(1024, 'a');
  // Write something into [800, 1824).
  size_t written;
  EXPECT_EQ(QUIC_NO_ERROR,
            buffer_->OnStreamData(800, source, clock_.ApproximateNow(),
                                  &written, &error_details_));
  source = std::string(100, 'b');
  // Write something into [kBlockSizeBytes * 2 - 20, kBlockSizeBytes * 2 + 80).
  EXPECT_EQ(QUIC_NO_ERROR,
            buffer_->OnStreamData(kBlockSizeBytes * 2 - 20, source,
                                  clock_.ApproximateNow(), &written,
                                  &error_details_));
  EXPECT_EQ(3, helper_->GapSize());
  EXPECT_EQ(1024u + 100u, buffer_->BytesBuffered());
  EXPECT_TRUE(helper_->CheckBufferInvariants());
}

TEST_F(QuicStreamSequencerBufferTest, OnStreamDataInLongStreamWithOverlap) {
  // Assume a stream has already buffered almost 4GB.
  uint64_t total_bytes_read = pow(2, 32) - 1;
  helper_->set_total_bytes_read(total_bytes_read);
  helper_->set_gaps(std::list<Gap>(
      1, Gap(total_bytes_read, std::numeric_limits<QuicStreamOffset>::max())));

  // Three new out of order frames arrive.
  const size_t kBytesToWrite = 100;
  string source(kBytesToWrite, 'a');
  size_t written;
  // Frame [2^32 + 500, 2^32 + 600).
  QuicStreamOffset offset = pow(2, 32) + 500;
  EXPECT_EQ(QUIC_NO_ERROR,
            buffer_->OnStreamData(offset, source, clock_.ApproximateNow(),
                                  &written, &error_details_));
  EXPECT_EQ(2, helper_->GapSize());

  // Frame [2^32 + 700, 2^32 + 800).
  offset = pow(2, 32) + 700;
  EXPECT_EQ(QUIC_NO_ERROR,
            buffer_->OnStreamData(offset, source, clock_.ApproximateNow(),
                                  &written, &error_details_));
  EXPECT_EQ(3, helper_->GapSize());

  // Another frame [2^32 + 300, 2^32 + 400).
  offset = pow(2, 32) + 300;
  EXPECT_EQ(QUIC_NO_ERROR,
            buffer_->OnStreamData(offset, source, clock_.ApproximateNow(),
                                  &written, &error_details_));
  EXPECT_EQ(4, helper_->GapSize());
}

TEST_F(QuicStreamSequencerBufferTest, OnStreamDataTillEnd) {
  // Write 50 bytes to the end.
  const size_t kBytesToWrite = 50;
  std::string source(kBytesToWrite, 'a');
  size_t written;
  EXPECT_EQ(QUIC_NO_ERROR,
            buffer_->OnStreamData(max_capacity_bytes_ - kBytesToWrite, source,
                                  clock_.ApproximateNow(), &written,
                                  &error_details_));
  EXPECT_EQ(50u, buffer_->BytesBuffered());
  EXPECT_TRUE(helper_->CheckBufferInvariants());
}

TEST_F(QuicStreamSequencerBufferTest, OnStreamDataTillEndCorner) {
  // Write 1 byte to the end.
  const size_t kBytesToWrite = 1;
  std::string source(kBytesToWrite, 'a');
  size_t written;
  EXPECT_EQ(QUIC_NO_ERROR,
            buffer_->OnStreamData(max_capacity_bytes_ - kBytesToWrite, source,
                                  clock_.ApproximateNow(), &written,
                                  &error_details_));
  EXPECT_EQ(1u, buffer_->BytesBuffered());
  EXPECT_TRUE(helper_->CheckBufferInvariants());
}

TEST_F(QuicStreamSequencerBufferTest, OnStreamDataBeyondCapacity) {
  std::string source(60, 'a');
  size_t written;
  EXPECT_EQ(QUIC_INTERNAL_ERROR,
            buffer_->OnStreamData(max_capacity_bytes_ - 50, source,
                                  clock_.ApproximateNow(), &written,
                                  &error_details_));
  EXPECT_TRUE(helper_->CheckBufferInvariants());

  source = "b";
  EXPECT_EQ(QUIC_INTERNAL_ERROR,
            buffer_->OnStreamData(max_capacity_bytes_, source,
                                  clock_.ApproximateNow(), &written,
                                  &error_details_));
  EXPECT_TRUE(helper_->CheckBufferInvariants());

  EXPECT_EQ(QUIC_INTERNAL_ERROR,
            buffer_->OnStreamData(max_capacity_bytes_ * 1000, source,
                                  clock_.ApproximateNow(), &written,
                                  &error_details_));
  EXPECT_TRUE(helper_->CheckBufferInvariants());
  EXPECT_EQ(0u, buffer_->BytesBuffered());
}

TEST_F(QuicStreamSequencerBufferTest, Readv100Bytes) {
  std::string source(1024, 'a');
  clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
  QuicTime t1 = clock_.ApproximateNow();
  // Write something into [kBlockSizeBytes, kBlockSizeBytes + 1024).
  size_t written;
  buffer_->OnStreamData(kBlockSizeBytes, source, t1, &written, &error_details_);
  EXPECT_FALSE(buffer_->HasBytesToRead());
  source = std::string(100, 'b');
  clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
  QuicTime t2 = clock_.ApproximateNow();
  // Write something into [0, 100).
  buffer_->OnStreamData(0, source, t2, &written, &error_details_);
  EXPECT_TRUE(buffer_->HasBytesToRead());
  EXPECT_EQ(2u, helper_->frame_arrival_time_map()->size());
  // Read into a iovec array with total capacity of 120 bytes.
  char dest[120];
  iovec iovecs[3]{iovec{dest, 40}, iovec{dest + 40, 40}, iovec{dest + 80, 40}};
  size_t read = buffer_->Readv(iovecs, 3);
  EXPECT_EQ(100u, read);
  EXPECT_EQ(100u, buffer_->BytesConsumed());
  EXPECT_EQ(source, std::string(dest, read));
  EXPECT_EQ(1u, helper_->frame_arrival_time_map()->size());
  EXPECT_TRUE(helper_->CheckBufferInvariants());
}

TEST_F(QuicStreamSequencerBufferTest, ReadvAcrossBlocks) {
  std::string source(kBlockSizeBytes + 50, 'a');
  // Write 1st block to full and extand 50 bytes to next block.
  size_t written;
  buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
                        &error_details_);
  EXPECT_EQ(source.size(), helper_->ReadableBytes());
  // Iteratively read 512 bytes from buffer_-> Overwrite dest[] each time.
  char dest[512];
  while (helper_->ReadableBytes()) {
    std::fill(dest, dest + 512, 0);
    iovec iovecs[2]{iovec{dest, 256}, iovec{dest + 256, 256}};
    buffer_->Readv(iovecs, 2);
  }
  // The last read only reads the rest 50 bytes in 2nd block.
  EXPECT_EQ(std::string(50, 'a'), std::string(dest, 50));
  EXPECT_EQ(0, dest[50]) << "Dest[50] shouln't be filled.";
  EXPECT_EQ(source.size(), buffer_->BytesConsumed());
  EXPECT_TRUE(buffer_->Empty());
  EXPECT_TRUE(helper_->CheckBufferInvariants());
}

TEST_F(QuicStreamSequencerBufferTest, ClearAfterRead) {
  std::string source(kBlockSizeBytes + 50, 'a');
  // Write 1st block to full with 'a'.
  size_t written;
  buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
                        &error_details_);
  // Read first 512 bytes from buffer to make space at the beginning.
  char dest[512]{0};
  const iovec iov{dest, 512};
  buffer_->Readv(&iov, 1);
  // Clear() should make buffer empty while preserving BytesConsumed()
  buffer_->Clear();
  EXPECT_TRUE(buffer_->Empty());
  EXPECT_TRUE(helper_->CheckBufferInvariants());
}

TEST_F(QuicStreamSequencerBufferTest,
       OnStreamDataAcrossLastBlockAndFillCapacity) {
  std::string source(kBlockSizeBytes + 50, 'a');
  // Write 1st block to full with 'a'.
  size_t written;
  buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
                        &error_details_);
  // Read first 512 bytes from buffer to make space at the beginning.
  char dest[512]{0};
  const iovec iov{dest, 512};
  buffer_->Readv(&iov, 1);
  EXPECT_EQ(source.size(), written);

  // Write more than half block size of bytes in the last block with 'b', which
  // will wrap to the beginning and reaches the full capacity.
  source = std::string(0.5 * kBlockSizeBytes + 512, 'b');
  EXPECT_EQ(QUIC_NO_ERROR, buffer_->OnStreamData(2 * kBlockSizeBytes, source,
                                                 clock_.ApproximateNow(),
                                                 &written, &error_details_));
  EXPECT_EQ(source.size(), written);
  EXPECT_TRUE(helper_->CheckBufferInvariants());
}

TEST_F(QuicStreamSequencerBufferTest,
       OnStreamDataAcrossLastBlockAndExceedCapacity) {
  std::string source(kBlockSizeBytes + 50, 'a');
  // Write 1st block to full.
  size_t written;
  buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
                        &error_details_);
  // Read first 512 bytes from buffer to make space at the beginning.
  char dest[512]{0};
  const iovec iov{dest, 512};
  buffer_->Readv(&iov, 1);

  // Try to write from [max_capacity_bytes_ - 0.5 * kBlockSizeBytes,
  // max_capacity_bytes_ +  512 + 1). But last bytes exceeds current capacity.
  source = std::string(0.5 * kBlockSizeBytes + 512 + 1, 'b');
  EXPECT_EQ(QUIC_INTERNAL_ERROR,
            buffer_->OnStreamData(2 * kBlockSizeBytes, source,
                                  clock_.ApproximateNow(), &written,
                                  &error_details_));
  EXPECT_TRUE(helper_->CheckBufferInvariants());
}

TEST_F(QuicStreamSequencerBufferTest, ReadvAcrossLastBlock) {
  // Write to full capacity and read out 512 bytes at beginning and continue
  // appending 256 bytes.
  std::string source(max_capacity_bytes_, 'a');
  clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
  QuicTime t = clock_.ApproximateNow();
  size_t written;
  buffer_->OnStreamData(0, source, t, &written, &error_details_);
  char dest[512]{0};
  const iovec iov{dest, 512};
  buffer_->Readv(&iov, 1);
  source = std::string(256, 'b');
  clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
  QuicTime t2 = clock_.ApproximateNow();
  buffer_->OnStreamData(max_capacity_bytes_, source, t2, &written,
                        &error_details_);
  EXPECT_TRUE(helper_->CheckBufferInvariants());
  EXPECT_EQ(2u, helper_->frame_arrival_time_map()->size());

  // Read all data out.
  std::unique_ptr<char[]> dest1{new char[max_capacity_bytes_]{0}};
  const iovec iov1{dest1.get(), max_capacity_bytes_};
  EXPECT_EQ(max_capacity_bytes_ - 512 + 256, buffer_->Readv(&iov1, 1));
  EXPECT_EQ(max_capacity_bytes_ + 256, buffer_->BytesConsumed());
  EXPECT_TRUE(buffer_->Empty());
  EXPECT_TRUE(helper_->CheckBufferInvariants());
  EXPECT_EQ(0u, helper_->frame_arrival_time_map()->size());
}

TEST_F(QuicStreamSequencerBufferTest, ReadvEmpty) {
  char dest[512]{0};
  iovec iov{dest, 512};
  size_t read = buffer_->Readv(&iov, 1);
  EXPECT_EQ(0u, read);
  EXPECT_TRUE(helper_->CheckBufferInvariants());
}

TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionsEmpty) {
  iovec iovs[2];
  int iov_count = buffer_->GetReadableRegions(iovs, 2);
  EXPECT_EQ(0, iov_count);
  EXPECT_EQ(nullptr, iovs[iov_count].iov_base);
  EXPECT_EQ(0u, iovs[iov_count].iov_len);
}

TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionsBlockedByGap) {
  // Write into [1, 1024).
  std::string source(1023, 'a');
  size_t written;
  buffer_->OnStreamData(1, source, clock_.ApproximateNow(), &written,
                        &error_details_);
  // Try to get readable regions, but none is there.
  iovec iovs[2];
  int iov_count = buffer_->GetReadableRegions(iovs, 2);
  EXPECT_EQ(0, iov_count);
}

TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionsTillEndOfBlock) {
  // Write first block to full with [0, 256) 'a' and the rest 'b' then read out
  // [0, 256)
  std::string source(kBlockSizeBytes, 'a');
  size_t written;
  buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
                        &error_details_);
  char dest[256];
  helper_->Read(dest, 256);
  // Get readable region from [256, 1024)
  iovec iovs[2];
  int iov_count = buffer_->GetReadableRegions(iovs, 2);
  EXPECT_EQ(1, iov_count);
  EXPECT_EQ(std::string(kBlockSizeBytes - 256, 'a'),
            std::string(reinterpret_cast<const char*>(iovs[0].iov_base),
                        iovs[0].iov_len));
}

TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionsWithinOneBlock) {
  // Write into [0, 1024) and then read out [0, 256)
  std::string source(1024, 'a');
  size_t written;
  buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
                        &error_details_);
  char dest[256];
  helper_->Read(dest, 256);
  // Get readable region from [256, 1024)
  iovec iovs[2];
  int iov_count = buffer_->GetReadableRegions(iovs, 2);
  EXPECT_EQ(1, iov_count);
  EXPECT_EQ(std::string(1024 - 256, 'a'),
            std::string(reinterpret_cast<const char*>(iovs[0].iov_base),
                        iovs[0].iov_len));
}

TEST_F(QuicStreamSequencerBufferTest,
       GetReadableRegionsAcrossBlockWithLongIOV) {
  // Write into [0, 2 * kBlockSizeBytes + 1024) and then read out [0, 1024)
  std::string source(2 * kBlockSizeBytes + 1024, 'a');
  size_t written;
  buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
                        &error_details_);
  char dest[1024];
  helper_->Read(dest, 1024);

  iovec iovs[4];
  int iov_count = buffer_->GetReadableRegions(iovs, 4);
  EXPECT_EQ(3, iov_count);
  EXPECT_EQ(kBlockSizeBytes - 1024, iovs[0].iov_len);
  EXPECT_EQ(kBlockSizeBytes, iovs[1].iov_len);
  EXPECT_EQ(1024u, iovs[2].iov_len);
}

TEST_F(QuicStreamSequencerBufferTest,
       GetReadableRegionsWithMultipleIOVsAcrossEnd) {
  // Write into [0, 2 * kBlockSizeBytes + 1024) and then read out [0, 1024)
  // and then append 1024 + 512 bytes.
  std::string source(2.5 * kBlockSizeBytes - 1024, 'a');
  size_t written;
  buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
                        &error_details_);
  char dest[1024];
  helper_->Read(dest, 1024);
  // Write across the end.
  source = std::string(1024 + 512, 'b');
  buffer_->OnStreamData(2.5 * kBlockSizeBytes - 1024, source,
                        clock_.ApproximateNow(), &written, &error_details_);
  // Use short iovec's.
  iovec iovs[2];
  int iov_count = buffer_->GetReadableRegions(iovs, 2);
  EXPECT_EQ(2, iov_count);
  EXPECT_EQ(kBlockSizeBytes - 1024, iovs[0].iov_len);
  EXPECT_EQ(kBlockSizeBytes, iovs[1].iov_len);
  // Use long iovec's and wrap the end of buffer.
  iovec iovs1[5];
  EXPECT_EQ(4, buffer_->GetReadableRegions(iovs1, 5));
  EXPECT_EQ(0.5 * kBlockSizeBytes, iovs1[2].iov_len);
  EXPECT_EQ(512u, iovs1[3].iov_len);
  EXPECT_EQ(std::string(512, 'b'),
            std::string(reinterpret_cast<const char*>(iovs1[3].iov_base),
                        iovs1[3].iov_len));
}

TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionEmpty) {
  iovec iov;
  QuicTime t = QuicTime::Zero();
  EXPECT_FALSE(buffer_->GetReadableRegion(&iov, &t));
  EXPECT_EQ(nullptr, iov.iov_base);
  EXPECT_EQ(0u, iov.iov_len);
}

TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionBeforeGap) {
  // Write into [1, 1024).
  std::string source(1023, 'a');
  size_t written;
  buffer_->OnStreamData(1, source, clock_.ApproximateNow(), &written,
                        &error_details_);
  // GetReadableRegion should return false because range  [0,1) hasn't been
  // filled yet.
  iovec iov;
  QuicTime t = QuicTime::Zero();
  EXPECT_FALSE(buffer_->GetReadableRegion(&iov, &t));
}

TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionTillEndOfBlock) {
  // Write into [0, kBlockSizeBytes + 1) and then read out [0, 256)
  std::string source(kBlockSizeBytes + 1, 'a');
  size_t written;
  clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
  QuicTime t = clock_.ApproximateNow();
  buffer_->OnStreamData(0, source, t, &written, &error_details_);
  char dest[256];
  helper_->Read(dest, 256);
  // Get readable region from [256, 1024)
  iovec iov;
  QuicTime t2 = QuicTime::Zero();
  EXPECT_TRUE(buffer_->GetReadableRegion(&iov, &t2));
  EXPECT_EQ(t, t2);
  EXPECT_EQ(
      std::string(kBlockSizeBytes - 256, 'a'),
      std::string(reinterpret_cast<const char*>(iov.iov_base), iov.iov_len));
}

TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionTillGap) {
  // Write into [0, kBlockSizeBytes - 1) and then read out [0, 256)
  std::string source(kBlockSizeBytes - 1, 'a');
  size_t written;
  clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
  QuicTime t = clock_.ApproximateNow();
  buffer_->OnStreamData(0, source, t, &written, &error_details_);
  char dest[256];
  helper_->Read(dest, 256);
  // Get readable region from [256, 1023)
  iovec iov;
  QuicTime t2 = QuicTime::Zero();
  EXPECT_TRUE(buffer_->GetReadableRegion(&iov, &t2));
  EXPECT_EQ(t, t2);
  EXPECT_EQ(
      std::string(kBlockSizeBytes - 1 - 256, 'a'),
      std::string(reinterpret_cast<const char*>(iov.iov_base), iov.iov_len));
}

TEST_F(QuicStreamSequencerBufferTest, GetReadableRegionByArrivalTime) {
  // Write into [0, kBlockSizeBytes - 100) and then read out [0, 256)
  std::string source(kBlockSizeBytes - 100, 'a');
  size_t written;
  clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
  QuicTime t = clock_.ApproximateNow();
  buffer_->OnStreamData(0, source, t, &written, &error_details_);
  char dest[256];
  helper_->Read(dest, 256);
  // Write into [kBlockSizeBytes - 100, kBlockSizeBytes - 50)] in same time
  std::string source2(50, 'b');
  clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
  buffer_->OnStreamData(kBlockSizeBytes - 100, source2, t, &written,
                        &error_details_);

  // Write into [kBlockSizeBytes - 50, kBlockSizeBytes)] in another time
  std::string source3(50, 'c');
  clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
  QuicTime t3 = clock_.ApproximateNow();
  buffer_->OnStreamData(kBlockSizeBytes - 50, source3, t3, &written,
                        &error_details_);

  // Get readable region from [256, 1024 - 50)
  iovec iov;
  QuicTime t4 = QuicTime::Zero();
  EXPECT_TRUE(buffer_->GetReadableRegion(&iov, &t4));
  EXPECT_EQ(t, t4);
  EXPECT_EQ(
      std::string(kBlockSizeBytes - 100 - 256, 'a') + source2,
      std::string(reinterpret_cast<const char*>(iov.iov_base), iov.iov_len));
}

TEST_F(QuicStreamSequencerBufferTest, MarkConsumedInOneBlock) {
  // Write into [0, 1024) and then read out [0, 256)
  std::string source(1024, 'a');
  size_t written;
  buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
                        &error_details_);
  char dest[256];
  helper_->Read(dest, 256);

  EXPECT_TRUE(buffer_->MarkConsumed(512));
  EXPECT_EQ(256u + 512u, buffer_->BytesConsumed());
  EXPECT_EQ(256u, helper_->ReadableBytes());
  EXPECT_EQ(1u, helper_->frame_arrival_time_map()->size());
  buffer_->MarkConsumed(256);
  EXPECT_EQ(0u, helper_->frame_arrival_time_map()->size());
  EXPECT_TRUE(buffer_->Empty());
  EXPECT_TRUE(helper_->CheckBufferInvariants());
}

TEST_F(QuicStreamSequencerBufferTest, MarkConsumedNotEnoughBytes) {
  // Write into [0, 1024) and then read out [0, 256)
  std::string source(1024, 'a');
  size_t written;
  QuicTime t = clock_.ApproximateNow();
  buffer_->OnStreamData(0, source, t, &written, &error_details_);
  char dest[256];
  helper_->Read(dest, 256);

  // Consume 1st 512 bytes
  EXPECT_TRUE(buffer_->MarkConsumed(512));
  EXPECT_EQ(256u + 512u, buffer_->BytesConsumed());
  EXPECT_EQ(256u, helper_->ReadableBytes());
  // Try to consume one bytes more than available. Should return false.
  EXPECT_FALSE(buffer_->MarkConsumed(257));
  EXPECT_EQ(256u + 512u, buffer_->BytesConsumed());
  QuicTime t2 = QuicTime::Zero();
  iovec iov;
  EXPECT_TRUE(buffer_->GetReadableRegion(&iov, &t2));
  EXPECT_EQ(t, t2);
  EXPECT_TRUE(helper_->CheckBufferInvariants());
}

TEST_F(QuicStreamSequencerBufferTest, MarkConsumedAcrossBlock) {
  // Write into [0, 2 * kBlockSizeBytes + 1024) and then read out [0, 1024)
  std::string source(2 * kBlockSizeBytes + 1024, 'a');
  size_t written;
  buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
                        &error_details_);
  char dest[1024];
  helper_->Read(dest, 1024);

  buffer_->MarkConsumed(2 * kBlockSizeBytes);
  EXPECT_EQ(source.size(), buffer_->BytesConsumed());
  EXPECT_TRUE(buffer_->Empty());
  EXPECT_TRUE(helper_->CheckBufferInvariants());
}

TEST_F(QuicStreamSequencerBufferTest, MarkConsumedAcrossEnd) {
  // Write into [0, 2.5 * kBlockSizeBytes - 1024) and then read out [0, 1024)
  // and then append 1024 + 512 bytes.
  std::string source(2.5 * kBlockSizeBytes - 1024, 'a');
  size_t written;
  buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
                        &error_details_);
  char dest[1024];
  helper_->Read(dest, 1024);
  source = std::string(1024 + 512, 'b');
  buffer_->OnStreamData(2.5 * kBlockSizeBytes - 1024, source,
                        clock_.ApproximateNow(), &written, &error_details_);
  EXPECT_EQ(1024u, buffer_->BytesConsumed());

  // Consume to the end of 2nd block.
  buffer_->MarkConsumed(2 * kBlockSizeBytes - 1024);
  EXPECT_EQ(2 * kBlockSizeBytes, buffer_->BytesConsumed());
  // Consume across the physical end of buffer
  buffer_->MarkConsumed(0.5 * kBlockSizeBytes + 500);
  EXPECT_EQ(max_capacity_bytes_ + 500, buffer_->BytesConsumed());
  EXPECT_EQ(12u, helper_->ReadableBytes());
  // Consume to the logical end of buffer
  buffer_->MarkConsumed(12);
  EXPECT_EQ(max_capacity_bytes_ + 512, buffer_->BytesConsumed());
  EXPECT_TRUE(buffer_->Empty());
  EXPECT_TRUE(helper_->CheckBufferInvariants());
}

TEST_F(QuicStreamSequencerBufferTest, FlushBufferedFrames) {
  // Write into [0, 2.5 * kBlockSizeBytes - 1024) and then read out [0, 1024).
  std::string source(max_capacity_bytes_ - 1024, 'a');
  size_t written;
  buffer_->OnStreamData(0, source, clock_.ApproximateNow(), &written,
                        &error_details_);
  char dest[1024];
  helper_->Read(dest, 1024);
  EXPECT_EQ(1024u, buffer_->BytesConsumed());
  // Write [1024, 512) to the physical beginning.
  source = std::string(512, 'b');
  buffer_->OnStreamData(max_capacity_bytes_, source, clock_.ApproximateNow(),
                        &written, &error_details_);
  EXPECT_EQ(512u, written);
  EXPECT_EQ(max_capacity_bytes_ - 1024 + 512, buffer_->FlushBufferedFrames());
  EXPECT_EQ(max_capacity_bytes_ + 512, buffer_->BytesConsumed());
  EXPECT_TRUE(buffer_->Empty());
  EXPECT_TRUE(helper_->CheckBufferInvariants());
  // Clear buffer at this point should still preserve BytesConsumed().
  buffer_->Clear();
  EXPECT_EQ(max_capacity_bytes_ + 512, buffer_->BytesConsumed());
  EXPECT_TRUE(helper_->CheckBufferInvariants());
}

class QuicStreamSequencerBufferRandomIOTest
    : public QuicStreamSequencerBufferTest {
 public:
  typedef std::pair<QuicStreamOffset, size_t> OffsetSizePair;

  void SetUp() override {
    // Test against a larger capacity then above tests. Also make sure the last
    // block is partially available to use.
    max_capacity_bytes_ = 6.25 * kBlockSizeBytes;
    // Stream to be buffered should be larger than the capacity to test wrap
    // around.
    bytes_to_buffer_ = 2 * max_capacity_bytes_;
    Initialize();

    uint32_t seed = base::RandInt(0, std::numeric_limits<int32_t>::max());
    LOG(INFO) << "RandomWriteAndProcessInPlace test seed is " << seed;
    rng_.set_seed(seed);
  }

  // Create an out-of-order source stream with given size to populate
  // shuffled_buf_.
  void CreateSourceAndShuffle(size_t max_chunk_size_bytes) {
    max_chunk_size_bytes_ = max_chunk_size_bytes;
    std::unique_ptr<OffsetSizePair[]> chopped_stream(
        new OffsetSizePair[bytes_to_buffer_]);

    // Split stream into small chunks with random length. chopped_stream will be
    // populated with segmented stream chunks.
    size_t start_chopping_offset = 0;
    size_t iterations = 0;
    while (start_chopping_offset < bytes_to_buffer_) {
      size_t max_chunk = min<size_t>(max_chunk_size_bytes_,
                                     bytes_to_buffer_ - start_chopping_offset);
      size_t chunk_size = rng_.RandUint64() % max_chunk + 1;
      chopped_stream[iterations] =
          OffsetSizePair(start_chopping_offset, chunk_size);
      start_chopping_offset += chunk_size;
      ++iterations;
    }
    DCHECK(start_chopping_offset == bytes_to_buffer_);
    size_t chunk_num = iterations;

    // Randomly change the sequence of in-ordered OffsetSizePairs to make a
    // out-of-order array of OffsetSizePairs.
    for (int i = chunk_num - 1; i >= 0; --i) {
      size_t random_idx = rng_.RandUint64() % (i + 1);
      DVLOG(1) << "chunk offset " << chopped_stream[random_idx].first
               << " size " << chopped_stream[random_idx].second;
      shuffled_buf_.push_front(chopped_stream[random_idx]);
      chopped_stream[random_idx] = chopped_stream[i];
    }
  }

  // Write the currently first chunk of data in the out-of-order stream into
  // QuicStreamSequencerBuffer. If current chuck cannot be written into buffer
  // because it goes beyond current capacity, move it to the end of
  // shuffled_buf_ and write it later.
  void WriteNextChunkToBuffer() {
    OffsetSizePair& chunk = shuffled_buf_.front();
    QuicStreamOffset offset = chunk.first;
    const size_t num_to_write = chunk.second;
    std::unique_ptr<char[]> write_buf{new char[max_chunk_size_bytes_]};
    for (size_t i = 0; i < num_to_write; ++i) {
      write_buf[i] = (offset + i) % 256;
    }
    base::StringPiece string_piece_w(write_buf.get(), num_to_write);
    size_t written;
    auto result =
        buffer_->OnStreamData(offset, string_piece_w, clock_.ApproximateNow(),
                              &written, &error_details_);
    if (result == QUIC_NO_ERROR) {
      shuffled_buf_.pop_front();
      total_bytes_written_ += num_to_write;
    } else {
      // This chunk offset exceeds window size.
      shuffled_buf_.push_back(chunk);
      shuffled_buf_.pop_front();
    }
    DVLOG(1) << " write at offset: " << offset
             << " len to write: " << num_to_write << " write result: " << result
             << " left over: " << shuffled_buf_.size();
  }

 protected:
  std::list<OffsetSizePair> shuffled_buf_;
  size_t max_chunk_size_bytes_;
  QuicStreamOffset bytes_to_buffer_;
  size_t total_bytes_written_ = 0;
  size_t total_bytes_read_ = 0;
  SimpleRandom rng_;
};

TEST_F(QuicStreamSequencerBufferRandomIOTest, RandomWriteAndReadv) {
  // Set kMaxReadSize larger than kBlockSizeBytes to test both small and large
  // read.
  const size_t kMaxReadSize = kBlockSizeBytes * 2;
  // kNumReads is larger than 1 to test how multiple read destinations work.
  const size_t kNumReads = 2;
  // Since write and read operation have equal possibility to be called. Bytes
  // to be written into and read out of should roughly the same.
  const size_t kMaxWriteSize = kNumReads * kMaxReadSize;
  size_t iterations = 0;

  CreateSourceAndShuffle(kMaxWriteSize);

  while ((!shuffled_buf_.empty() || total_bytes_read_ < bytes_to_buffer_) &&
         iterations <= 2 * bytes_to_buffer_) {
    uint8_t next_action =
        shuffled_buf_.empty() ? uint8_t{1} : rng_.RandUint64() % 2;
    DVLOG(1) << "iteration: " << iterations;
    switch (next_action) {
      case 0: {  // write
        WriteNextChunkToBuffer();
        ASSERT_TRUE(helper_->CheckBufferInvariants());
        break;
      }
      case 1: {  // readv
        std::unique_ptr<char[][kMaxReadSize]> read_buf{
            new char[kNumReads][kMaxReadSize]};
        iovec dest_iov[kNumReads];
        size_t num_to_read = 0;
        for (size_t i = 0; i < kNumReads; ++i) {
          dest_iov[i].iov_base =
              reinterpret_cast<void*>(const_cast<char*>(read_buf[i]));
          dest_iov[i].iov_len = rng_.RandUint64() % kMaxReadSize;
          num_to_read += dest_iov[i].iov_len;
        }
        size_t actually_read = buffer_->Readv(dest_iov, kNumReads);
        ASSERT_LE(actually_read, num_to_read);
        DVLOG(1) << " read from offset: " << total_bytes_read_
                 << " size: " << num_to_read
                 << " actual read: " << actually_read;
        for (size_t i = 0; i < actually_read; ++i) {
          char ch = (i + total_bytes_read_) % 256;
          ASSERT_EQ(ch, GetCharFromIOVecs(i, dest_iov, kNumReads))
              << " at iteration " << iterations;
        }
        total_bytes_read_ += actually_read;
        ASSERT_EQ(total_bytes_read_, buffer_->BytesConsumed());
        ASSERT_TRUE(helper_->CheckBufferInvariants());
        break;
      }
    }
    ++iterations;
    ASSERT_LE(total_bytes_read_, total_bytes_written_);
  }
  EXPECT_LT(iterations, bytes_to_buffer_) << "runaway test";
  EXPECT_LE(bytes_to_buffer_, total_bytes_read_) << "iterations: "
                                                 << iterations;
  EXPECT_LE(bytes_to_buffer_, total_bytes_written_);
}

TEST_F(QuicStreamSequencerBufferRandomIOTest, RandomWriteAndConsumeInPlace) {
  // The value 4 is chosen such that the max write size is no larger than the
  // maximum buffer capacity.
  const size_t kMaxNumReads = 4;
  // Adjust write amount be roughly equal to that GetReadableRegions() can get.
  const size_t kMaxWriteSize = kMaxNumReads * kBlockSizeBytes;
  ASSERT_LE(kMaxWriteSize, max_capacity_bytes_);
  size_t iterations = 0;

  CreateSourceAndShuffle(kMaxWriteSize);

  while ((!shuffled_buf_.empty() || total_bytes_read_ < bytes_to_buffer_) &&
         iterations <= 2 * bytes_to_buffer_) {
    uint8_t next_action =
        shuffled_buf_.empty() ? uint8_t{1} : rng_.RandUint64() % 2;
    DVLOG(1) << "iteration: " << iterations;
    switch (next_action) {
      case 0: {  // write
        WriteNextChunkToBuffer();
        ASSERT_TRUE(helper_->CheckBufferInvariants());
        break;
      }
      case 1: {  // GetReadableRegions and then MarkConsumed
        size_t num_read = rng_.RandUint64() % kMaxNumReads + 1;
        iovec dest_iov[kMaxNumReads];
        ASSERT_TRUE(helper_->CheckBufferInvariants());
        size_t actually_num_read =
            buffer_->GetReadableRegions(dest_iov, num_read);
        ASSERT_LE(actually_num_read, num_read);
        size_t avail_bytes = 0;
        for (size_t i = 0; i < actually_num_read; ++i) {
          avail_bytes += dest_iov[i].iov_len;
        }
        // process random number of bytes (check the value of each byte).
        size_t bytes_to_process = rng_.RandUint64() % (avail_bytes + 1);
        size_t bytes_processed = 0;
        for (size_t i = 0; i < actually_num_read; ++i) {
          size_t bytes_in_block = min<size_t>(
              bytes_to_process - bytes_processed, dest_iov[i].iov_len);
          if (bytes_in_block == 0) {
            break;
          }
          for (size_t j = 0; j < bytes_in_block; ++j) {
            ASSERT_LE(bytes_processed, bytes_to_process);
            char char_expected =
                (buffer_->BytesConsumed() + bytes_processed) % 256;
            ASSERT_EQ(char_expected,
                      reinterpret_cast<const char*>(dest_iov[i].iov_base)[j])
                << " at iteration " << iterations;
            ++bytes_processed;
          }
        }

        buffer_->MarkConsumed(bytes_processed);

        DVLOG(1) << "iteration " << iterations << ": try to get " << num_read
                 << " readable regions, actually get " << actually_num_read
                 << " from offset: " << total_bytes_read_
                 << "\nprocesse bytes: " << bytes_processed;
        total_bytes_read_ += bytes_processed;
        ASSERT_EQ(total_bytes_read_, buffer_->BytesConsumed());
        ASSERT_TRUE(helper_->CheckBufferInvariants());
        break;
      }
    }
    ++iterations;
    ASSERT_LE(total_bytes_read_, total_bytes_written_);
  }
  EXPECT_LT(iterations, bytes_to_buffer_) << "runaway test";
  EXPECT_LE(bytes_to_buffer_, total_bytes_read_) << "iterations: "
                                                 << iterations;
  EXPECT_LE(bytes_to_buffer_, total_bytes_written_);
}

}  // anonymous namespace

}  // namespace test

}  // namespace net