1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
|
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "content/renderer/media/audio_device.h"
#include "base/bind.h"
#include "base/debug/trace_event.h"
#include "base/message_loop.h"
#include "base/time.h"
#include "content/common/child_process.h"
#include "content/common/media/audio_messages.h"
#include "content/common/view_messages.h"
#include "content/renderer/render_thread_impl.h"
#include "media/audio/audio_util.h"
AudioDevice::AudioDevice(size_t buffer_size,
int channels,
double sample_rate,
RenderCallback* callback)
: buffer_size_(buffer_size),
channels_(channels),
bits_per_sample_(16),
sample_rate_(sample_rate),
callback_(callback),
audio_delay_milliseconds_(0),
volume_(1.0),
stream_id_(0),
memory_length_(0) {
filter_ = RenderThreadImpl::current()->audio_message_filter();
audio_data_.reserve(channels);
for (int i = 0; i < channels; ++i) {
float* channel_data = new float[buffer_size];
audio_data_.push_back(channel_data);
}
}
AudioDevice::~AudioDevice() {
// The current design requires that the user calls Stop() before deleting
// this class.
CHECK_EQ(0, stream_id_);
for (int i = 0; i < channels_; ++i)
delete [] audio_data_[i];
}
void AudioDevice::Start() {
AudioParameters params;
params.format = AudioParameters::AUDIO_PCM_LOW_LATENCY;
params.channels = channels_;
params.sample_rate = static_cast<int>(sample_rate_);
params.bits_per_sample = bits_per_sample_;
params.samples_per_packet = buffer_size_;
ChildProcess::current()->io_message_loop()->PostTask(
FROM_HERE,
base::Bind(&AudioDevice::InitializeOnIOThread, this, params));
}
void AudioDevice::Stop() {
DCHECK(MessageLoop::current() != ChildProcess::current()->io_message_loop());
// Max waiting time for Stop() to complete. If this time limit is passed,
// we will stop waiting and return false. It ensures that Stop() can't block
// the calling thread forever.
const base::TimeDelta kMaxTimeOut = base::TimeDelta::FromMilliseconds(1000);
base::WaitableEvent completion(false, false);
ChildProcess::current()->io_message_loop()->PostTask(
FROM_HERE,
base::Bind(&AudioDevice::ShutDownOnIOThread, this, &completion));
// We wait here for the IO task to be completed to remove race conflicts
// with OnLowLatencyCreated() and to ensure that Stop() acts as a synchronous
// function call.
if (!completion.TimedWait(kMaxTimeOut)) {
LOG(ERROR) << "Failed to shut down audio output on IO thread";
}
if (audio_thread_.get()) {
// Close the socket handler to terminate the main thread function in the
// audio thread.
{
base::SyncSocket socket(socket_handle_);
}
audio_thread_->Join();
audio_thread_.reset(NULL);
}
}
bool AudioDevice::SetVolume(double volume) {
if (volume < 0 || volume > 1.0)
return false;
ChildProcess::current()->io_message_loop()->PostTask(
FROM_HERE,
base::Bind(&AudioDevice::SetVolumeOnIOThread, this, volume));
volume_ = volume;
return true;
}
void AudioDevice::GetVolume(double* volume) {
// Return a locally cached version of the current scaling factor.
*volume = volume_;
}
void AudioDevice::InitializeOnIOThread(const AudioParameters& params) {
// Make sure we don't call Start() more than once.
DCHECK_EQ(0, stream_id_);
if (stream_id_)
return;
stream_id_ = filter_->AddDelegate(this);
Send(new AudioHostMsg_CreateStream(stream_id_, params, true));
}
void AudioDevice::StartOnIOThread() {
if (stream_id_)
Send(new AudioHostMsg_PlayStream(stream_id_));
}
void AudioDevice::ShutDownOnIOThread(base::WaitableEvent* completion) {
// Make sure we don't call shutdown more than once.
if (!stream_id_) {
completion->Signal();
return;
}
filter_->RemoveDelegate(stream_id_);
Send(new AudioHostMsg_CloseStream(stream_id_));
stream_id_ = 0;
completion->Signal();
}
void AudioDevice::SetVolumeOnIOThread(double volume) {
if (stream_id_)
Send(new AudioHostMsg_SetVolume(stream_id_, volume));
}
void AudioDevice::OnRequestPacket(AudioBuffersState buffers_state) {
// This method does not apply to the low-latency system.
NOTIMPLEMENTED();
}
void AudioDevice::OnStateChanged(AudioStreamState state) {
if (state == kAudioStreamError) {
DLOG(WARNING) << "AudioDevice::OnStateChanged(kError)";
}
NOTIMPLEMENTED();
}
void AudioDevice::OnCreated(
base::SharedMemoryHandle handle, uint32 length) {
// Not needed in this simple implementation.
NOTIMPLEMENTED();
}
void AudioDevice::OnLowLatencyCreated(
base::SharedMemoryHandle handle,
base::SyncSocket::Handle socket_handle,
uint32 length) {
DCHECK(MessageLoop::current() == ChildProcess::current()->io_message_loop());
#if defined(OS_WIN)
DCHECK(handle);
DCHECK(socket_handle);
#else
DCHECK_GE(handle.fd, 0);
DCHECK_GE(socket_handle, 0);
#endif
DCHECK(length);
DCHECK(!audio_thread_.get());
// Takes care of the case when Stop() is called before OnLowLatencyCreated().
if (!stream_id_) {
base::SharedMemory::CloseHandle(handle);
// Close the socket handler.
base::SyncSocket socket(socket_handle);
return;
}
shared_memory_handle_ = handle;
memory_length_ = length;
DCHECK_GE(length, buffer_size_ * sizeof(int16) * channels_);
socket_handle_ = socket_handle;
audio_thread_.reset(
new base::DelegateSimpleThread(this, "renderer_audio_thread"));
audio_thread_->Start();
MessageLoop::current()->PostTask(
FROM_HERE,
base::Bind(&AudioDevice::StartOnIOThread, this));
}
void AudioDevice::OnVolume(double volume) {
NOTIMPLEMENTED();
}
void AudioDevice::Send(IPC::Message* message) {
filter_->Send(message);
}
// Our audio thread runs here.
void AudioDevice::Run() {
audio_thread_->SetThreadPriority(base::kThreadPriority_RealtimeAudio);
base::SharedMemory shared_memory(shared_memory_handle_, false);
shared_memory.Map(memory_length_);
// Allow the client to pre-populate the buffer.
FireRenderCallback(reinterpret_cast<int16*>(shared_memory.memory()));
base::SyncSocket socket(socket_handle_);
int pending_data;
const int samples_per_ms = static_cast<int>(sample_rate_) / 1000;
const int bytes_per_ms = channels_ * (bits_per_sample_ / 8) * samples_per_ms;
while ((sizeof(pending_data) == socket.Receive(&pending_data,
sizeof(pending_data))) &&
(pending_data >= 0)) {
// Convert the number of pending bytes in the render buffer
// into milliseconds.
audio_delay_milliseconds_ = pending_data / bytes_per_ms;
FireRenderCallback(reinterpret_cast<int16*>(shared_memory.memory()));
}
}
void AudioDevice::FireRenderCallback(int16* data) {
TRACE_EVENT0("audio", "AudioDevice::FireRenderCallback");
if (callback_) {
// Update the audio-delay measurement then ask client to render audio.
callback_->Render(audio_data_, buffer_size_, audio_delay_milliseconds_);
// Interleave, scale, and clip to int16.
media::InterleaveFloatToInt16(audio_data_,
data,
buffer_size_);
}
}
|