1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
|
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/logging.h"
#include "base/macros.h"
#include "media/cast/sender/vp8_quantizer_parser.h"
namespace media {
namespace cast {
namespace {
// Vp8BitReader is a re-implementation of a subset of the VP8 entropy decoder.
// It is used to decompress the VP8 bitstream for the purposes of quickly
// parsing the VP8 frame headers. It is mostly the exact same implementation
// found in third_party/libvpx_new/.../vp8/decoder/dboolhuff.h except that only
// the portion of the implementation needed to parse the frame headers is
// present. As of this writing, the implementation in libvpx could not be
// re-used because of the way that the code is structured, and lack of the
// necessary parts being exported.
class Vp8BitReader {
public:
Vp8BitReader(const uint8_t* data, size_t size)
: encoded_data_(data), encoded_data_end_(data + size) {
Vp8DecoderReadBytes();
}
~Vp8BitReader() {}
// Decode one bit. The output is 0 or 1.
unsigned int DecodeBit();
// Decode a value with |num_bits|. The decoding order is MSB first.
unsigned int DecodeValue(unsigned int num_bits);
private:
// Read new bytes frome the encoded data buffer until |bit_count_| > 0.
void Vp8DecoderReadBytes();
const uint8_t* encoded_data_; // Current byte to decode.
const uint8_t* const encoded_data_end_; // The end of the byte to decode.
// The following two variables are maintained by the decoder.
// General decoding rule:
// If |value_| is in the range of 0 to half of |range_|, output 0.
// Otherwise output 1.
// |range_| and |value_| need to be shifted when necessary to avoid underflow.
unsigned int range_ = 255;
unsigned int value_ = 0;
// Number of valid bits left to decode. Initializing it to -8 to let the
// decoder load two bytes at the beginning. The lower byte is used as
// a buffer byte. During the decoding, decoder needs to call
// Vp8DecoderReadBytes() to load new bytes when it becomes negative.
int bit_count_ = -8;
DISALLOW_COPY_AND_ASSIGN(Vp8BitReader);
};
// The number of bits to be left-shifted to make the variable range_ over 128.
const uint8_t vp8_shift[128] = {
0, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
// Mapping from the q_index(0-127) to the quantizer value(0-63).
const uint8_t vp8_quantizer_lookup[128] = {
0, 1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 10, 11, 12, 12, 13, 13, 14,
15, 16, 17, 18, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 27, 28, 28, 29, 29,
30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 39,
39, 40, 40, 41, 41, 42, 42, 42, 43, 43, 43, 44, 44, 44, 45, 45, 45, 46, 46,
46, 47, 47, 47, 48, 48, 48, 49, 49, 49, 50, 50, 50, 51, 51, 51, 52, 52, 52,
53, 53, 53, 54, 54, 54, 55, 55, 55, 56, 56, 56, 57, 57, 57, 58, 58, 58, 59,
59, 59, 60, 60, 60, 61, 61, 61, 62, 62, 62, 63, 63, 63};
void Vp8BitReader::Vp8DecoderReadBytes() {
int shift = -bit_count_;
while ((shift >= 0) && (encoded_data_ < encoded_data_end_)) {
bit_count_ += 8;
value_ |= static_cast<unsigned int>(*encoded_data_) << shift;
++encoded_data_;
shift -= 8;
}
}
unsigned int Vp8BitReader::DecodeBit() {
unsigned int decoded_bit = 0;
unsigned int split = 1 + (((range_ - 1) * 128) >> 8);
if (bit_count_ < 0) {
Vp8DecoderReadBytes();
}
DCHECK_GE(bit_count_, 0);
unsigned int shifted_split = split << 8;
if (value_ >= shifted_split) {
range_ -= split;
value_ -= shifted_split;
decoded_bit = 1;
} else {
range_ = split;
}
if (range_ < 128) {
int shift = vp8_shift[range_];
range_ <<= shift;
value_ <<= shift;
bit_count_ -= shift;
}
return decoded_bit;
}
unsigned int Vp8BitReader::DecodeValue(unsigned int num_bits) {
unsigned int decoded_value = 0;
for (int i = static_cast<int>(num_bits) - 1; i >= 0; i--) {
decoded_value |= (DecodeBit() << i);
}
return decoded_value;
}
// Parse the Segment Header part in the first partition.
void ParseSegmentHeader(Vp8BitReader* bit_reader) {
const bool segmentation_enabled = (bit_reader->DecodeBit() != 0);
DVLOG(2) << "segmentation_enabled:" << segmentation_enabled;
if (segmentation_enabled) {
const bool update_mb_segmentation_map = (bit_reader->DecodeBit() != 0);
const bool update_mb_segmentation_data = (bit_reader->DecodeBit() != 0);
DVLOG(2) << "update_mb_segmentation_data:" << update_mb_segmentation_data;
if (update_mb_segmentation_data) {
bit_reader->DecodeBit();
for (int i = 0; i < 4; ++i) {
if (bit_reader->DecodeBit()) {
bit_reader->DecodeValue(7 + 1); // Parse 7 bits value + 1 sign bit.
}
}
for (int i = 0; i < 4; ++i) {
if (bit_reader->DecodeBit()) {
bit_reader->DecodeValue(6 + 1); // Parse 6 bits value + 1 sign bit.
}
}
}
if (update_mb_segmentation_map) {
for (int i = 0; i < 3; ++i) {
if (bit_reader->DecodeBit()) {
bit_reader->DecodeValue(8);
}
}
}
}
}
// Parse the Filter Header in the first partition.
void ParseFilterHeader(Vp8BitReader* bit_reader) {
// Parse 1 bit filter_type + 6 bits loop_filter_level + 3 bits
// sharpness_level.
bit_reader->DecodeValue(1 + 6 + 3);
if (bit_reader->DecodeBit()) {
if (bit_reader->DecodeBit()) {
for (int i = 0; i < 4; ++i) {
if (bit_reader->DecodeBit()) {
bit_reader->DecodeValue(6 + 1); // Parse 6 bits value + 1 sign bit.
}
}
for (int i = 0; i < 4; ++i) {
if (bit_reader->DecodeBit()) {
bit_reader->DecodeValue(6 + 1); // Parse 6 bits value + 1 sign bit.
}
}
}
}
}
} // unnamed namespace
int ParseVp8HeaderQuantizer(const uint8_t* encoded_data, size_t size) {
DCHECK(encoded_data);
if (size <= 3) {
return -1;
}
const bool is_key = !(encoded_data[0] & 1);
const unsigned int header_3bytes =
encoded_data[0] | (encoded_data[1] << 8) | (encoded_data[2] << 16);
// Parse the size of the first partition.
unsigned int partition_size = (header_3bytes >> 5);
encoded_data += 3; // Skip 3 bytes.
size -= 3;
if (is_key) {
if (size <= 7) {
return -1;
}
encoded_data += 7; // Skip 7 bytes.
size -= 7;
}
if (size < partition_size) {
return -1;
}
Vp8BitReader bit_reader(encoded_data, partition_size);
if (is_key) {
bit_reader.DecodeValue(1 + 1); // Parse two bits: color_space + clamp_type.
}
ParseSegmentHeader(&bit_reader);
ParseFilterHeader(&bit_reader);
// Parse the number of coefficient data partitions.
bit_reader.DecodeValue(2);
// Parse the base q_index.
uint8_t q_index = static_cast<uint8_t>(bit_reader.DecodeValue(7));
if (q_index > 127) {
return 63;
}
return vp8_quantizer_lookup[q_index];
}
} // namespace cast
} // namespace media
|