summaryrefslogtreecommitdiffstats
path: root/net/quic/quic_packet_generator.cc
blob: 25da2be97b8a6a03d0132bad251fd6031f064dbf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "net/quic/quic_packet_generator.h"

#include "base/logging.h"
#include "net/quic/quic_bug_tracker.h"
#include "net/quic/quic_flags.h"
#include "net/quic/quic_utils.h"

using base::StringPiece;

namespace net {

QuicPacketGenerator::QuicPacketGenerator(QuicConnectionId connection_id,
                                         QuicFramer* framer,
                                         QuicRandom* random_generator,
                                         QuicBufferAllocator* buffer_allocator,
                                         DelegateInterface* delegate)
    : delegate_(delegate),
      packet_creator_(connection_id,
                      framer,
                      random_generator,
                      buffer_allocator,
                      delegate),
      batch_mode_(false),
      should_send_ack_(false),
      should_send_stop_waiting_(false) {}

QuicPacketGenerator::~QuicPacketGenerator() {
  QuicUtils::DeleteFrames(&queued_control_frames_);
}

void QuicPacketGenerator::SetShouldSendAck(bool also_send_stop_waiting) {
  if (packet_creator_.has_ack()) {
    // Ack already queued, nothing to do.
    return;
  }

  if (also_send_stop_waiting && packet_creator_.has_stop_waiting()) {
    QUIC_BUG << "Should only ever be one pending stop waiting frame.";
    return;
  }

  should_send_ack_ = true;
  should_send_stop_waiting_ = also_send_stop_waiting;
  SendQueuedFrames(/*flush=*/false);
}

void QuicPacketGenerator::AddControlFrame(const QuicFrame& frame) {
  queued_control_frames_.push_back(frame);
  SendQueuedFrames(/*flush=*/false);
}

QuicConsumedData QuicPacketGenerator::ConsumeData(
    QuicStreamId id,
    QuicIOVector iov,
    QuicStreamOffset offset,
    bool fin,
    QuicAckListenerInterface* listener) {
  bool has_handshake = id == kCryptoStreamId;
  // To make reasoning about crypto frames easier, we don't combine them with
  // other retransmittable frames in a single packet.
  const bool flush =
      has_handshake && packet_creator_.HasPendingRetransmittableFrames();
  SendQueuedFrames(flush);

  size_t total_bytes_consumed = 0;
  bool fin_consumed = false;

  if (!packet_creator_.HasRoomForStreamFrame(id, offset)) {
    packet_creator_.Flush();
  }

  if (!fin && (iov.total_length == 0)) {
    QUIC_BUG << "Attempt to consume empty data without FIN.";
    return QuicConsumedData(0, false);
  }

  while (delegate_->ShouldGeneratePacket(
      HAS_RETRANSMITTABLE_DATA, has_handshake ? IS_HANDSHAKE : NOT_HANDSHAKE)) {
    QuicFrame frame;
    if (!packet_creator_.ConsumeData(id, iov, total_bytes_consumed,
                                     offset + total_bytes_consumed, fin,
                                     has_handshake, &frame)) {
      // The creator is always flushed if there's not enough room for a new
      // stream frame before ConsumeData, so ConsumeData should always succeed.
      QUIC_BUG << "Failed to ConsumeData, stream:" << id;
      return QuicConsumedData(0, false);
    }

    // A stream frame is created and added.
    size_t bytes_consumed = frame.stream_frame->frame_length;
    if (listener != nullptr) {
      packet_creator_.AddAckListener(listener, bytes_consumed);
    }
    total_bytes_consumed += bytes_consumed;
    fin_consumed = fin && total_bytes_consumed == iov.total_length;
    DCHECK(total_bytes_consumed == iov.total_length ||
           (bytes_consumed > 0 && packet_creator_.HasPendingFrames()));

    if (!InBatchMode()) {
      packet_creator_.Flush();
    }

    if (total_bytes_consumed == iov.total_length) {
      // We're done writing the data. Exit the loop.
      // We don't make this a precondition because we could have 0 bytes of data
      // if we're simply writing a fin.
      break;
    }
    // TODO(ianswett): Move to having the creator flush itself when it's full.
    packet_creator_.Flush();
  }

  // Don't allow the handshake to be bundled with other retransmittable frames.
  if (has_handshake) {
    SendQueuedFrames(/*flush=*/true);
  }

  DCHECK(InBatchMode() || !packet_creator_.HasPendingFrames());
  return QuicConsumedData(total_bytes_consumed, fin_consumed);
}

void QuicPacketGenerator::GenerateMtuDiscoveryPacket(
    QuicByteCount target_mtu,
    QuicAckListenerInterface* listener) {
  // MTU discovery frames must be sent by themselves.
  if (!packet_creator_.CanSetMaxPacketLength()) {
    QUIC_BUG << "MTU discovery packets should only be sent when no other "
             << "frames needs to be sent.";
    return;
  }
  const QuicByteCount current_mtu = GetCurrentMaxPacketLength();

  // The MTU discovery frame is allocated on the stack, since it is going to be
  // serialized within this function.
  QuicMtuDiscoveryFrame mtu_discovery_frame;
  QuicFrame frame(mtu_discovery_frame);

  // Send the probe packet with the new length.
  SetMaxPacketLength(target_mtu);
  const bool success = packet_creator_.AddPaddedSavedFrame(frame);
  if (listener != nullptr) {
    packet_creator_.AddAckListener(listener, 0);
  }
  packet_creator_.Flush();
  // The only reason AddFrame can fail is that the packet is too full to fit in
  // a ping.  This is not possible for any sane MTU.
  DCHECK(success);

  // Reset the packet length back.
  SetMaxPacketLength(current_mtu);
}

bool QuicPacketGenerator::CanSendWithNextPendingFrameAddition() const {
  DCHECK(HasPendingFrames());
  HasRetransmittableData retransmittable =
      (should_send_ack_ || should_send_stop_waiting_)
          ? NO_RETRANSMITTABLE_DATA
          : HAS_RETRANSMITTABLE_DATA;
  if (retransmittable == HAS_RETRANSMITTABLE_DATA) {
    DCHECK(!queued_control_frames_.empty());  // These are retransmittable.
  }
  return delegate_->ShouldGeneratePacket(retransmittable, NOT_HANDSHAKE);
}

void QuicPacketGenerator::SendQueuedFrames(bool flush) {
  // Only add pending frames if we are SURE we can then send the whole packet.
  while (HasPendingFrames() &&
         (flush || CanSendWithNextPendingFrameAddition())) {
    AddNextPendingFrame();
  }
  if (flush || !InBatchMode()) {
    packet_creator_.Flush();
  }
}

bool QuicPacketGenerator::InBatchMode() {
  return batch_mode_;
}

void QuicPacketGenerator::StartBatchOperations() {
  batch_mode_ = true;
}

void QuicPacketGenerator::FinishBatchOperations() {
  batch_mode_ = false;
  SendQueuedFrames(/*flush=*/false);
}

void QuicPacketGenerator::FlushAllQueuedFrames() {
  SendQueuedFrames(/*flush=*/true);
}

bool QuicPacketGenerator::HasQueuedFrames() const {
  return packet_creator_.HasPendingFrames() || HasPendingFrames();
}

bool QuicPacketGenerator::IsPendingPacketEmpty() const {
  return !packet_creator_.HasPendingFrames();
}

bool QuicPacketGenerator::HasPendingFrames() const {
  return should_send_ack_ || should_send_stop_waiting_ ||
         !queued_control_frames_.empty();
}

bool QuicPacketGenerator::AddNextPendingFrame() {
  if (should_send_ack_) {
    if (FLAGS_quic_dont_copy_acks) {
      should_send_ack_ =
          !packet_creator_.AddSavedFrame(delegate_->GetUpdatedAckFrame());
    } else {
      delegate_->PopulateAckFrame(&pending_ack_frame_);
      // If we can't this add the frame now, then we still need to do so later.
      should_send_ack_ =
          !packet_creator_.AddSavedFrame(QuicFrame(&pending_ack_frame_));
      // Return success if we have added the frame.
    }
    return !should_send_ack_;
  }

  if (should_send_stop_waiting_) {
    delegate_->PopulateStopWaitingFrame(&pending_stop_waiting_frame_);
    // If we can't this add the frame now, then we still need to do so later.
    should_send_stop_waiting_ =
        !packet_creator_.AddSavedFrame(QuicFrame(&pending_stop_waiting_frame_));
    // Return success if we have cleared out this flag (i.e., added the frame).
    // If we still need to send, then the frame is full, and we have failed.
    return !should_send_stop_waiting_;
  }

  QUIC_BUG_IF(queued_control_frames_.empty())
      << "AddNextPendingFrame called with no queued control frames.";
  if (!packet_creator_.AddSavedFrame(queued_control_frames_.back())) {
    // Packet was full.
    return false;
  }
  queued_control_frames_.pop_back();
  return true;
}

void QuicPacketGenerator::StopSendingVersion() {
  packet_creator_.StopSendingVersion();
}

QuicPacketNumber QuicPacketGenerator::packet_number() const {
  return packet_creator_.packet_number();
}

QuicByteCount QuicPacketGenerator::GetCurrentMaxPacketLength() const {
  return packet_creator_.max_packet_length();
}

void QuicPacketGenerator::SetMaxPacketLength(QuicByteCount length) {
  DCHECK(packet_creator_.CanSetMaxPacketLength());
  packet_creator_.SetMaxPacketLength(length);
}

QuicEncryptedPacket* QuicPacketGenerator::SerializeVersionNegotiationPacket(
    const QuicVersionVector& supported_versions) {
  return packet_creator_.SerializeVersionNegotiationPacket(supported_versions);
}

void QuicPacketGenerator::ReserializeAllFrames(
    const PendingRetransmission& retransmission,
    char* buffer,
    size_t buffer_len) {
  packet_creator_.ReserializeAllFrames(retransmission, buffer, buffer_len);
}

void QuicPacketGenerator::UpdateSequenceNumberLength(
    QuicPacketNumber least_packet_awaited_by_peer,
    QuicPacketCount max_packets_in_flight) {
  return packet_creator_.UpdatePacketNumberLength(least_packet_awaited_by_peer,
                                                  max_packets_in_flight);
}

void QuicPacketGenerator::SetConnectionIdLength(uint32_t length) {
  if (length == 0) {
    packet_creator_.set_connection_id_length(PACKET_0BYTE_CONNECTION_ID);
  } else if (length == 1) {
    packet_creator_.set_connection_id_length(PACKET_1BYTE_CONNECTION_ID);
  } else if (length <= 4) {
    packet_creator_.set_connection_id_length(PACKET_4BYTE_CONNECTION_ID);
  } else {
    packet_creator_.set_connection_id_length(PACKET_8BYTE_CONNECTION_ID);
  }
}

void QuicPacketGenerator::set_encryption_level(EncryptionLevel level) {
  packet_creator_.set_encryption_level(level);
}

void QuicPacketGenerator::SetEncrypter(EncryptionLevel level,
                                       QuicEncrypter* encrypter) {
  packet_creator_.SetEncrypter(level, encrypter);
}

void QuicPacketGenerator::SetCurrentPath(
    QuicPathId path_id,
    QuicPacketNumber least_packet_awaited_by_peer,
    QuicPacketCount max_packets_in_flight) {
  packet_creator_.SetCurrentPath(path_id, least_packet_awaited_by_peer,
                                 max_packets_in_flight);
}

}  // namespace net